Properties

Degree 1
Conductor 67
Sign $-0.465 + 0.884i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.928 + 0.371i)2-s + (0.654 + 0.755i)3-s + (0.723 − 0.690i)4-s + (−0.841 − 0.540i)5-s + (−0.888 − 0.458i)6-s + (0.786 + 0.618i)7-s + (−0.415 + 0.909i)8-s + (−0.142 + 0.989i)9-s + (0.981 + 0.189i)10-s + (0.888 − 0.458i)11-s + (0.995 + 0.0950i)12-s + (−0.580 + 0.814i)13-s + (−0.959 − 0.281i)14-s + (−0.142 − 0.989i)15-s + (0.0475 − 0.998i)16-s + (0.723 + 0.690i)17-s + ⋯
L(s,χ)  = 1  + (−0.928 + 0.371i)2-s + (0.654 + 0.755i)3-s + (0.723 − 0.690i)4-s + (−0.841 − 0.540i)5-s + (−0.888 − 0.458i)6-s + (0.786 + 0.618i)7-s + (−0.415 + 0.909i)8-s + (−0.142 + 0.989i)9-s + (0.981 + 0.189i)10-s + (0.888 − 0.458i)11-s + (0.995 + 0.0950i)12-s + (−0.580 + 0.814i)13-s + (−0.959 − 0.281i)14-s + (−0.142 − 0.989i)15-s + (0.0475 − 0.998i)16-s + (0.723 + 0.690i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 67 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (-0.465 + 0.884i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 67 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (-0.465 + 0.884i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(67\)
\( \varepsilon \)  =  $-0.465 + 0.884i$
motivic weight  =  \(0\)
character  :  $\chi_{67} (46, \cdot )$
Sato-Tate  :  $\mu(66)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 67,\ (1:\ ),\ -0.465 + 0.884i)$
$L(\chi,\frac{1}{2})$  $\approx$  $0.5610476145 + 0.9295192667i$
$L(\frac12,\chi)$  $\approx$  $0.5610476145 + 0.9295192667i$
$L(\chi,1)$  $\approx$  0.7252745480 + 0.4265363599i
$L(1,\chi)$  $\approx$  0.7252745480 + 0.4265363599i

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−30.78823535000466228957224868520, −30.291325356695603839842265219143, −29.5283643599863572308340202933, −27.762406096917210986847244225304, −27.09840200499377036593957008748, −26.04452518065133350680738279005, −24.95506071733374285842586851771, −23.93120609561471523865612030685, −22.528594497904429513827203787001, −20.72568104318138695942088963572, −19.95358649157850374015011741883, −19.10494782775015569245598423704, −18.0122215349115256593991455977, −17.05111999769145553922965143039, −15.28008255159135450114175215603, −14.30093181465422821837577692349, −12.507714542568628918817249857062, −11.58224878675793990838914846151, −10.2546630712627529311113033600, −8.67201654228346442835457226020, −7.60975833590611258321863533021, −6.903932221329547815503413093694, −3.904558514586871407406272960810, −2.43375298507177956356641652321, −0.72529800243408573350276801595, 1.79908957334904189853951495431, 3.93417930761515235183729574590, 5.50871039635781330554736678444, 7.58426412831882347840407831489, 8.57423313786400086140873645892, 9.3589570583898969095614957333, 10.95530991337511658445257893609, 12.01678942869342707480120132312, 14.415280368711310766585683819050, 15.04408819537026068290329289648, 16.303027680290164817918205414017, 17.06493000648547477911897017220, 18.9132597949400911841120788251, 19.5629513661362795692961856673, 20.727301896500405852592696732757, 21.755146182575494648323140232048, 23.70636438738249480024658948276, 24.60184164568805518199810777109, 25.61163603215774297066664546217, 26.86663659965503113378868262921, 27.61905370572441595477739163150, 28.13492721223593510909139763098, 29.860880831267664776334348550081, 31.32957933735483450815838509734, 32.09328398339832467446057869264

Graph of the $Z$-function along the critical line