Properties

Degree 1
Conductor 67
Sign $0.809 - 0.586i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.5 − 0.866i)2-s + 3-s + (−0.5 + 0.866i)4-s + 5-s + (−0.5 − 0.866i)6-s + (−0.5 + 0.866i)7-s + 8-s + 9-s + (−0.5 − 0.866i)10-s + (−0.5 + 0.866i)11-s + (−0.5 + 0.866i)12-s + (−0.5 − 0.866i)13-s + 14-s + 15-s + (−0.5 − 0.866i)16-s + (−0.5 − 0.866i)17-s + ⋯
L(s,χ)  = 1  + (−0.5 − 0.866i)2-s + 3-s + (−0.5 + 0.866i)4-s + 5-s + (−0.5 − 0.866i)6-s + (−0.5 + 0.866i)7-s + 8-s + 9-s + (−0.5 − 0.866i)10-s + (−0.5 + 0.866i)11-s + (−0.5 + 0.866i)12-s + (−0.5 − 0.866i)13-s + 14-s + 15-s + (−0.5 − 0.866i)16-s + (−0.5 − 0.866i)17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 67 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.809 - 0.586i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 67 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.809 - 0.586i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(67\)
\( \varepsilon \)  =  $0.809 - 0.586i$
motivic weight  =  \(0\)
character  :  $\chi_{67} (29, \cdot )$
Sato-Tate  :  $\mu(3)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 67,\ (0:\ ),\ 0.809 - 0.586i)$
$L(\chi,\frac{1}{2})$  $\approx$  $0.9566209793 - 0.3101595422i$
$L(\frac12,\chi)$  $\approx$  $0.9566209793 - 0.3101595422i$
$L(\chi,1)$  $\approx$  1.045565782 - 0.2882887488i
$L(1,\chi)$  $\approx$  1.045565782 - 0.2882887488i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−32.339912999649138495952507859900, −31.44528209215799632571623817664, −29.74325188245316012894116868225, −28.94876328963653684096390016560, −27.29337104687190317621229553444, −26.11101556776264715867975610902, −25.9664000847639651593334957409, −24.5377999302475958567705160043, −23.80053845540282900836291043847, −22.09511016983960599023519882411, −20.87173863246160879150820704089, −19.48978408348497224722234890397, −18.699569791995021132613836596150, −17.2426800381579665198263859168, −16.33477733695046932587264806747, −14.9253429910191898558050804492, −13.81004673190599756721944420028, −13.25940344534530425188505490277, −10.45053281042900295348817677002, −9.62723045560199383447576005853, −8.46344299324580560564784425007, −7.16585894040888362850714231635, −5.923514614460286331214908418314, −4.02380268123247089792132075807, −1.879391647351747033046785612033, 2.14447304380519374943053029498, 2.87588070876532184435116229667, 4.90912131021594238312018548924, 7.12662258170354519885955712626, 8.709517189125195522418878190114, 9.52337119791475147862054394525, 10.48169567714137167019090875493, 12.54687392645402047709647639143, 13.113013033426080362887193859116, 14.55483288584328563021782049228, 15.97258899351231866932065098280, 17.7595508827905523201094815594, 18.39749727137024929085532699512, 19.74172351194684631510784897961, 20.5709863403771278849367228218, 21.63606946682300554271715377492, 22.48260534187109209618747055822, 24.72294888033272516354112372939, 25.57856611000383641819897831735, 26.25905399685517679059540037509, 27.65046795112191552896075524618, 28.7215592423847176556411639882, 29.69508230087233881826897467868, 30.71906597583668520902114750448, 31.734328194530924450901411054

Graph of the $Z$-function along the critical line