Properties

Label 1-667-667.666-r1-0-0
Degree $1$
Conductor $667$
Sign $1$
Analytic cond. $71.6791$
Root an. cond. $71.6791$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 5-s + 6-s − 7-s − 8-s + 9-s + 10-s + 11-s − 12-s + 13-s + 14-s + 15-s + 16-s + 17-s − 18-s + 19-s − 20-s + 21-s − 22-s + 24-s + 25-s − 26-s − 27-s − 28-s − 30-s + ⋯
L(s)  = 1  − 2-s − 3-s + 4-s − 5-s + 6-s − 7-s − 8-s + 9-s + 10-s + 11-s − 12-s + 13-s + 14-s + 15-s + 16-s + 17-s − 18-s + 19-s − 20-s + 21-s − 22-s + 24-s + 25-s − 26-s − 27-s − 28-s − 30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 667 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 667 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(667\)    =    \(23 \cdot 29\)
Sign: $1$
Analytic conductor: \(71.6791\)
Root analytic conductor: \(71.6791\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{667} (666, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 667,\ (1:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6988598802\)
\(L(\frac12)\) \(\approx\) \(0.6988598802\)
\(L(1)\) \(\approx\) \(0.4865718133\)
\(L(1)\) \(\approx\) \(0.4865718133\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 \)
29 \( 1 \)
good2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 + T \)
13 \( 1 + T \)
17 \( 1 + T \)
19 \( 1 + T \)
31 \( 1 - T \)
37 \( 1 + T \)
41 \( 1 - T \)
43 \( 1 + T \)
47 \( 1 - T \)
53 \( 1 - T \)
59 \( 1 + T \)
61 \( 1 + T \)
67 \( 1 - T \)
71 \( 1 + T \)
73 \( 1 - T \)
79 \( 1 + T \)
83 \( 1 - T \)
89 \( 1 + T \)
97 \( 1 + T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−22.66116104468945981854579215835, −21.90973131689210430893921635657, −20.71444343027866082208030884826, −19.93667181166727446299697092530, −19.06456646888736374547119844733, −18.59666025623962465263097974542, −17.689469390690416651350041013154, −16.5496207517143350188763461226, −16.3345738943921906400932118490, −15.62528902093452673062456127362, −14.5918328601518102329922086955, −13.0325421120074152330811158904, −12.145774853701613855869099858307, −11.58380502389937507812421456782, −10.84632696346750916492131724003, −9.855001680231939791299673196105, −9.14127999489666318881059494881, −7.96333494861814155774235695751, −7.0882810835242355999052852798, −6.402846186525547927728926457130, −5.51225321720528189031212236380, −3.91390059049755598789300947720, −3.23257648409304430757695082965, −1.35363359080315757327540129387, −0.586080954139019066925136901801, 0.586080954139019066925136901801, 1.35363359080315757327540129387, 3.23257648409304430757695082965, 3.91390059049755598789300947720, 5.51225321720528189031212236380, 6.402846186525547927728926457130, 7.0882810835242355999052852798, 7.96333494861814155774235695751, 9.14127999489666318881059494881, 9.855001680231939791299673196105, 10.84632696346750916492131724003, 11.58380502389937507812421456782, 12.145774853701613855869099858307, 13.0325421120074152330811158904, 14.5918328601518102329922086955, 15.62528902093452673062456127362, 16.3345738943921906400932118490, 16.5496207517143350188763461226, 17.689469390690416651350041013154, 18.59666025623962465263097974542, 19.06456646888736374547119844733, 19.93667181166727446299697092530, 20.71444343027866082208030884826, 21.90973131689210430893921635657, 22.66116104468945981854579215835

Graph of the $Z$-function along the critical line