Properties

Degree 1
Conductor $ 5 \cdot 13 $
Sign $0.0171 - 0.999i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.866 − 0.5i)2-s + (0.866 − 0.5i)3-s + (0.5 − 0.866i)4-s + (0.5 − 0.866i)6-s + (−0.866 − 0.5i)7-s i·8-s + (0.5 − 0.866i)9-s + (0.5 + 0.866i)11-s i·12-s − 14-s + (−0.5 − 0.866i)16-s + (0.866 + 0.5i)17-s i·18-s + (−0.5 + 0.866i)19-s − 21-s + (0.866 + 0.5i)22-s + ⋯
L(s,χ)  = 1  + (0.866 − 0.5i)2-s + (0.866 − 0.5i)3-s + (0.5 − 0.866i)4-s + (0.5 − 0.866i)6-s + (−0.866 − 0.5i)7-s i·8-s + (0.5 − 0.866i)9-s + (0.5 + 0.866i)11-s i·12-s − 14-s + (−0.5 − 0.866i)16-s + (0.866 + 0.5i)17-s i·18-s + (−0.5 + 0.866i)19-s − 21-s + (0.866 + 0.5i)22-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (0.0171 - 0.999i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 65 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (0.0171 - 0.999i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(65\)    =    \(5 \cdot 13\)
\( \varepsilon \)  =  $0.0171 - 0.999i$
motivic weight  =  \(0\)
character  :  $\chi_{65} (43, \cdot )$
Sato-Tate  :  $\mu(12)$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((1,\ 65,\ (1:\ ),\ 0.0171 - 0.999i)\)
\(L(\chi,\frac{1}{2})\)  \(\approx\)  \(2.249724207 - 2.288646014i\)
\(L(\frac12,\chi)\)  \(\approx\)  \(2.249724207 - 2.288646014i\)
\(L(\chi,1)\)  \(\approx\)  \(1.825392141 - 1.096057620i\)
\(L(1,\chi)\)  \(\approx\)  \(1.825392141 - 1.096057620i\)

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−32.2266749119683817613012466739, −31.45197266258040901778853772740, −30.30854400282240089804106938105, −29.21993638740256696401530818286, −27.5133683769114671148234757915, −26.33354260406715261382965991323, −25.41130804783354452532612703444, −24.67677926436738267427346883705, −23.21933368782199879437979934161, −21.9612015326576118827870125637, −21.345698215099120375950068626726, −19.97888391005019466087818863134, −18.90781158292256360289073745742, −16.85012123218156404456542388824, −15.90868370467059622707469093069, −14.951884115250951352014534871967, −13.8180846867922974659853949615, −12.85237567380308097534444383494, −11.31465875993765833625400112332, −9.49369928701863899017869754872, −8.33181454803260980559803328445, −6.815594797824762417950401332163, −5.33351914546999686482740968010, −3.726164208189032379512948789490, −2.71724135842283025702547344112, 1.41841578871220177691053335801, 3.04153665518664138424644836759, 4.18429687264048783691262882202, 6.24980626020211210777476806923, 7.3731994108314045717850047015, 9.3209872855836719083292811682, 10.43241279832577950755577022290, 12.34012161237399847261535312751, 12.923469126131354177380626259873, 14.25110095969256723499420647103, 15.01973658292010972779024108469, 16.5852300770226784170445308827, 18.51767765710768460115986726775, 19.5596382812560942961625569573, 20.27446349856329078906157138611, 21.4161770365663677715069548468, 22.87200424783546251838575198196, 23.60892045495582333100285387184, 25.04606640896157265546834127392, 25.69832434165344004580347315842, 27.292450410688633343482267483005, 28.776771984987788404715963620, 29.75342494666273244244984699089, 30.53483143382970417224109288521, 31.56733966400274543865730556938

Graph of the $Z$-function along the critical line