Properties

Degree $1$
Conductor $61$
Sign $-0.381 + 0.924i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.743 − 0.669i)2-s + (−0.309 + 0.951i)3-s + (0.104 − 0.994i)4-s + (−0.913 + 0.406i)5-s + (0.406 + 0.913i)6-s + (−0.207 + 0.978i)7-s + (−0.587 − 0.809i)8-s + (−0.809 − 0.587i)9-s + (−0.406 + 0.913i)10-s + i·11-s + (0.913 + 0.406i)12-s + (−0.5 + 0.866i)13-s + (0.5 + 0.866i)14-s + (−0.104 − 0.994i)15-s + (−0.978 − 0.207i)16-s + (−0.994 − 0.104i)17-s + ⋯
L(s,χ)  = 1  + (0.743 − 0.669i)2-s + (−0.309 + 0.951i)3-s + (0.104 − 0.994i)4-s + (−0.913 + 0.406i)5-s + (0.406 + 0.913i)6-s + (−0.207 + 0.978i)7-s + (−0.587 − 0.809i)8-s + (−0.809 − 0.587i)9-s + (−0.406 + 0.913i)10-s + i·11-s + (0.913 + 0.406i)12-s + (−0.5 + 0.866i)13-s + (0.5 + 0.866i)14-s + (−0.104 − 0.994i)15-s + (−0.978 − 0.207i)16-s + (−0.994 − 0.104i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 61 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (-0.381 + 0.924i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 61 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (-0.381 + 0.924i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(61\)
Sign: $-0.381 + 0.924i$
Motivic weight: \(0\)
Character: $\chi_{61} (51, \cdot )$
Sato-Tate group: $\mu(60)$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 61,\ (1:\ ),\ -0.381 + 0.924i)\)

Particular Values

\(L(\chi,\frac{1}{2})\) \(\approx\) \(0.5622527194 + 0.8398844043i\)
\(L(\frac12,\chi)\) \(\approx\) \(0.5622527194 + 0.8398844043i\)
\(L(\chi,1)\) \(\approx\) \(0.9610200873 + 0.2106333001i\)
\(L(1,\chi)\) \(\approx\) \(0.9610200873 + 0.2106333001i\)

Euler product

   \(L(\chi,s) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)
   \(L(s,\chi) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−31.90451400205936337969736109611, −30.86077990666884292530533544543, −29.95892016609046196959177821312, −28.96696978338933579393680869771, −27.20487522107507963590011332379, −26.24342538894359015332134105167, −24.534654744132605957210464524262, −24.23869236805388959227592205354, −23.05742890866795567745372702097, −22.33781010501028387309185118209, −20.42250601064951026701762860978, −19.51835460688858440682160635148, −17.86754852422768716396651879476, −16.742795145918319698742602471749, −15.84126415823026252126133157668, −14.184953046212135111116082363825, −13.200776302324380229576414938630, −12.194530009379584256679800896376, −11.02679561165005507085906962273, −8.356447452305678679788218025334, −7.52709652781601669448169132043, −6.31841569869582289993012512434, −4.77900077532981463696358703468, −3.19685551704739142963365697285, −0.428900700201123469156532859520, 2.60140474976288679169136542055, 4.04484181253022934237017860826, 5.11668827153458069628401132432, 6.742425335434052280544222932196, 9.08608201003009770150767193013, 10.22154821896370512241416627725, 11.67414910245414845497334953923, 12.091156593546437967869032470720, 14.12438137181192367739037270329, 15.3969876806554631423255904507, 15.75286840348756507102048927482, 17.87031793010275540422173280991, 19.30202579395962108254344668022, 20.23276557953752334619408740214, 21.56280443397120097691018510958, 22.34903755971789706330811277387, 23.1544276394424461109080970191, 24.45447428781395356842367167738, 26.16169098733232618212205368631, 27.38065821265833932748885358127, 28.29330579064070724204040047183, 29.064753513432059009485928775503, 30.89476039131371939076183225550, 31.29713275111278603370884051596, 32.40996882654193317823354217361

Graph of the $Z$-function along the critical line