Properties

Degree $1$
Conductor $6017$
Sign $0.0307 + 0.999i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.681 + 0.732i)2-s + (0.309 − 0.951i)3-s + (−0.0724 − 0.997i)4-s + (0.836 + 0.548i)5-s + (0.485 + 0.873i)6-s + (−0.906 + 0.421i)7-s + (0.779 + 0.626i)8-s + (−0.809 − 0.587i)9-s + (−0.970 + 0.239i)10-s + (−0.970 − 0.239i)12-s + (−0.809 − 0.587i)13-s + (0.309 − 0.951i)14-s + (0.779 − 0.626i)15-s + (−0.989 + 0.144i)16-s + (−0.943 − 0.331i)17-s + (0.981 − 0.192i)18-s + ⋯
L(s,χ)  = 1  + (−0.681 + 0.732i)2-s + (0.309 − 0.951i)3-s + (−0.0724 − 0.997i)4-s + (0.836 + 0.548i)5-s + (0.485 + 0.873i)6-s + (−0.906 + 0.421i)7-s + (0.779 + 0.626i)8-s + (−0.809 − 0.587i)9-s + (−0.970 + 0.239i)10-s + (−0.970 − 0.239i)12-s + (−0.809 − 0.587i)13-s + (0.309 − 0.951i)14-s + (0.779 − 0.626i)15-s + (−0.989 + 0.144i)16-s + (−0.943 − 0.331i)17-s + (0.981 − 0.192i)18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 6017 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.0307 + 0.999i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 6017 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.0307 + 0.999i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(6017\)    =    \(11 \cdot 547\)
Sign: $0.0307 + 0.999i$
Motivic weight: \(0\)
Character: $\chi_{6017} (922, \cdot )$
Sato-Tate group: $\mu(65)$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 6017,\ (0:\ ),\ 0.0307 + 0.999i)\)

Particular Values

\(L(\chi,\frac{1}{2})\) \(\approx\) \(0.3366780601 + 0.3264800806i\)
\(L(\frac12,\chi)\) \(\approx\) \(0.3366780601 + 0.3264800806i\)
\(L(\chi,1)\) \(\approx\) \(0.6686818039 + 0.01502434031i\)
\(L(1,\chi)\) \(\approx\) \(0.6686818039 + 0.01502434031i\)

Euler product

   \(L(\chi,s) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)
   \(L(s,\chi) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.51377874069307498032900363739, −16.79164540564695310905712623136, −16.31279047578600823354372421280, −16.11889560181196398909670271159, −14.84698777841234791480749720860, −14.23588334828097619267168941852, −13.48578455170985790977337497064, −12.910790715789839452838329952961, −12.27389120452361999041598886287, −11.48851987747874926066825957308, −10.57315871168736838295872452759, −10.09116470974740579091734764946, −9.76672708457478348932074886728, −9.02148737701218719110605642817, −8.55156283671018714134703847115, −7.80107506160215658378332408429, −6.668442783851953700180036495996, −6.216771931075558999148430308941, −4.86480528255301320179592456443, −4.58962855810497039813974830847, −3.61472939863062823922085505919, −3.05433641295125890849630032428, −2.13761269716701190005931340626, −1.59510958309792862585767503543, −0.184654057875311389840410189930, 0.68367497715345821620189394165, 1.91927646334220191288173675350, 2.4107763021206277944423713467, 2.984694565304081520252720308985, 4.298686136514326085841849477053, 5.50234036392981773758549514679, 5.860339223442925946368659610838, 6.548148777130493318027922240967, 7.12151697078607324457892740207, 7.61114073676985135746563824215, 8.5400945173583433760805779698, 9.27979053602469691365427308213, 9.572638078711727398653795375, 10.37512915787453107962809284785, 11.18597331435737257729323537631, 11.940633170858086148759495065316, 12.90422680106336268657890500282, 13.45266470672487938634666418829, 13.8281271668716444765475886333, 14.792652593801504246898890707340, 15.16798732659905994935093698847, 15.86019094922838762205790927724, 16.764939301036668981492402818610, 17.479047764461235044116638010140, 17.83233361691927727816088140494

Graph of the $Z$-function along the critical line