Properties

Degree $1$
Conductor $6017$
Sign $0.599 + 0.800i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.399 + 0.916i)2-s + (−0.809 + 0.587i)3-s + (−0.681 + 0.732i)4-s + (0.958 + 0.285i)5-s + (−0.861 − 0.506i)6-s + (0.215 + 0.976i)7-s + (−0.943 − 0.331i)8-s + (0.309 − 0.951i)9-s + (0.120 + 0.992i)10-s + (0.120 − 0.992i)12-s + (0.309 − 0.951i)13-s + (−0.809 + 0.587i)14-s + (−0.943 + 0.331i)15-s + (−0.0724 − 0.997i)16-s + (−0.168 + 0.985i)17-s + (0.995 − 0.0965i)18-s + ⋯
L(s,χ)  = 1  + (0.399 + 0.916i)2-s + (−0.809 + 0.587i)3-s + (−0.681 + 0.732i)4-s + (0.958 + 0.285i)5-s + (−0.861 − 0.506i)6-s + (0.215 + 0.976i)7-s + (−0.943 − 0.331i)8-s + (0.309 − 0.951i)9-s + (0.120 + 0.992i)10-s + (0.120 − 0.992i)12-s + (0.309 − 0.951i)13-s + (−0.809 + 0.587i)14-s + (−0.943 + 0.331i)15-s + (−0.0724 − 0.997i)16-s + (−0.168 + 0.985i)17-s + (0.995 − 0.0965i)18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 6017 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.599 + 0.800i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 6017 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.599 + 0.800i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(6017\)    =    \(11 \cdot 547\)
Sign: $0.599 + 0.800i$
Motivic weight: \(0\)
Character: $\chi_{6017} (784, \cdot )$
Sato-Tate group: $\mu(65)$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 6017,\ (0:\ ),\ 0.599 + 0.800i)\)

Particular Values

\(L(\chi,\frac{1}{2})\) \(\approx\) \(1.419681326 + 0.7100859993i\)
\(L(\frac12,\chi)\) \(\approx\) \(1.419681326 + 0.7100859993i\)
\(L(\chi,1)\) \(\approx\) \(0.8628285401 + 0.6818175826i\)
\(L(1,\chi)\) \(\approx\) \(0.8628285401 + 0.6818175826i\)

Euler product

   \(L(\chi,s) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)
   \(L(s,\chi) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.64965744341335305417477648658, −17.22046678835180798922504662108, −16.397700661064152902068876656604, −15.918942067926959329637241072986, −14.476285436108123238458694714749, −14.07799677254577046793979848220, −13.51963411426240285954724600342, −13.11560698653860860466298173352, −12.31736992647754939229968011218, −11.5739967216256279412051077795, −11.234171673135354846647369430126, −10.40913133148336110212203013665, −9.79986044999836150024885839005, −9.325715603680274670613359442173, −8.273739157381034521185309129716, −7.408843631206443854042284398942, −6.62010547716928571765666885864, −5.99122815873028111233122246249, −5.29915582210338477996985871496, −4.66395479533391548178015597578, −4.04509635563127509034319783134, −2.976359648787793660654875967606, −2.10211495647235090989372656040, −1.29902695285217528218003022636, −1.05260522204414275796354929090, 0.42817644456649805591676228757, 1.736916836922794156851383301625, 2.828099967151483682474003988591, 3.41433358946158785831895232162, 4.472333792220339405687822270002, 5.13515052811258091317421207903, 5.5820282742302647646672194362, 6.28416456588075892245781574477, 6.575381262893088687919389205906, 7.65679947892547399434980612658, 8.60382492299828062815493866019, 8.97975008358444566288750385594, 9.86942249519060162572446547465, 10.41272918499808449414914172614, 11.204892552752502606695812145904, 12.05463839331037138892035904523, 12.6200738744898467950744451457, 13.214470520529003390669208701824, 14.00413465752281953488153760845, 14.85431369986972928556089738431, 15.128842411781051682678146431305, 15.82062384162029896476775710554, 16.43817103336459743337318868211, 17.14894198345264951176493983817, 17.78048197653893857089075860710

Graph of the $Z$-function along the critical line