Properties

Degree $1$
Conductor $6017$
Sign $-0.883 - 0.468i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.0379 − 0.999i)2-s + (0.963 + 0.266i)3-s + (−0.997 − 0.0758i)4-s + (0.492 − 0.870i)5-s + (0.302 − 0.953i)6-s + (0.897 + 0.440i)7-s + (−0.113 + 0.993i)8-s + (0.858 + 0.512i)9-s + (−0.851 − 0.524i)10-s + (−0.940 − 0.338i)12-s + (−0.134 − 0.990i)13-s + (0.473 − 0.880i)14-s + (0.705 − 0.708i)15-s + (0.988 + 0.151i)16-s + (−0.923 − 0.383i)17-s + (0.545 − 0.838i)18-s + ⋯
L(s,χ)  = 1  + (0.0379 − 0.999i)2-s + (0.963 + 0.266i)3-s + (−0.997 − 0.0758i)4-s + (0.492 − 0.870i)5-s + (0.302 − 0.953i)6-s + (0.897 + 0.440i)7-s + (−0.113 + 0.993i)8-s + (0.858 + 0.512i)9-s + (−0.851 − 0.524i)10-s + (−0.940 − 0.338i)12-s + (−0.134 − 0.990i)13-s + (0.473 − 0.880i)14-s + (0.705 − 0.708i)15-s + (0.988 + 0.151i)16-s + (−0.923 − 0.383i)17-s + (0.545 − 0.838i)18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 6017 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (-0.883 - 0.468i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 6017 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (-0.883 - 0.468i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(6017\)    =    \(11 \cdot 547\)
Sign: $-0.883 - 0.468i$
Motivic weight: \(0\)
Character: $\chi_{6017} (602, \cdot )$
Sato-Tate group: $\mu(910)$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 6017,\ (0:\ ),\ -0.883 - 0.468i)\)

Particular Values

\(L(\chi,\frac{1}{2})\) \(\approx\) \(0.6611333446 - 2.655912076i\)
\(L(\frac12,\chi)\) \(\approx\) \(0.6611333446 - 2.655912076i\)
\(L(\chi,1)\) \(\approx\) \(1.229253181 - 0.9801489493i\)
\(L(1,\chi)\) \(\approx\) \(1.229253181 - 0.9801489493i\)

Euler product

   \(L(\chi,s) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)
   \(L(s,\chi) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.86284778490854869711269547057, −17.491016896768260008333515090861, −16.724357570444861894492088621540, −15.80475404635859912233657202241, −15.220771444033873448402311108281, −14.64904734366989949423578705682, −14.0918473976799301228723706188, −13.69512567370565845634675003510, −13.26992959544312132045635430177, −12.09891818664440189165392032062, −11.5127463202766647218557714083, −10.25887833559072669707680116138, −10.02690066401110570411143953844, −9.169255063203710270651649670033, −8.39615446593376469207552189933, −7.945667907670513308098871331840, −7.232182357378563124503923128625, −6.62061787346729167755444738375, −6.13742320972841859486732287630, −5.06052717824625583325997812469, −4.24433076389694383089487723572, −3.78223860797918359264983316975, −2.807644957452517770959529550586, −1.86908329944245652739370612987, −1.29972877124225146889426852231, 0.56057612468743425175689760585, 1.463388791635804557487008229123, 2.26292127503701988973813855908, 2.60584014575487303811425931648, 3.58635190199900607021147369502, 4.4852518718619690374088489201, 4.93836500780125415305506593872, 5.41732578225846793378316096125, 6.64982250013601356261058558020, 7.803688408778335194805324610894, 8.45078796438748253572668811280, 8.73041232515116002900794096708, 9.41312615190309706149523175458, 10.167921686380548310515362051623, 10.633670599649671541557705952790, 11.57239753090753488805039455523, 12.21580897058165303107737234168, 12.88098754788060945689457986744, 13.50688776289434652504851918470, 13.932782734033488791285942346651, 14.65917561372144812890347554401, 15.38594644648015176762575121597, 15.943065944334624071655900897299, 16.98738341033894377238378176029, 17.74991053546441212604789389675

Graph of the $Z$-function along the critical line