Properties

Degree $1$
Conductor $6017$
Sign $0.470 - 0.882i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.361 + 0.932i)2-s + (0.691 + 0.722i)3-s + (−0.739 + 0.673i)4-s + (−0.147 − 0.989i)5-s + (−0.424 + 0.905i)6-s + (−0.276 + 0.961i)7-s + (−0.894 − 0.446i)8-s + (−0.0448 + 0.998i)9-s + (0.868 − 0.495i)10-s + (−0.997 − 0.0689i)12-s + (0.393 + 0.919i)13-s + (−0.995 + 0.0896i)14-s + (0.612 − 0.790i)15-s + (0.0930 − 0.995i)16-s + (0.897 + 0.440i)17-s + (−0.947 + 0.318i)18-s + ⋯
L(s,χ)  = 1  + (0.361 + 0.932i)2-s + (0.691 + 0.722i)3-s + (−0.739 + 0.673i)4-s + (−0.147 − 0.989i)5-s + (−0.424 + 0.905i)6-s + (−0.276 + 0.961i)7-s + (−0.894 − 0.446i)8-s + (−0.0448 + 0.998i)9-s + (0.868 − 0.495i)10-s + (−0.997 − 0.0689i)12-s + (0.393 + 0.919i)13-s + (−0.995 + 0.0896i)14-s + (0.612 − 0.790i)15-s + (0.0930 − 0.995i)16-s + (0.897 + 0.440i)17-s + (−0.947 + 0.318i)18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 6017 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.470 - 0.882i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 6017 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.470 - 0.882i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(6017\)    =    \(11 \cdot 547\)
Sign: $0.470 - 0.882i$
Motivic weight: \(0\)
Character: $\chi_{6017} (523, \cdot )$
Sato-Tate group: $\mu(910)$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 6017,\ (0:\ ),\ 0.470 - 0.882i)\)

Particular Values

\(L(\chi,\frac{1}{2})\) \(\approx\) \(-0.2151404344 + 0.1290708957i\)
\(L(\frac12,\chi)\) \(\approx\) \(-0.2151404344 + 0.1290708957i\)
\(L(\chi,1)\) \(\approx\) \(0.7844100939 + 0.7926906233i\)
\(L(1,\chi)\) \(\approx\) \(0.7844100939 + 0.7926906233i\)

Euler product

   \(L(\chi,s) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)
   \(L(s,\chi) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.699827582289844982457288571116, −16.510829190901731402160075409902, −15.65053598514472171821142250926, −14.80100647749613469358740151906, −14.25985054527162182641680512360, −13.999763769609144589035879329126, −13.238094397597378597370680148380, −12.45660962062433127680737183644, −12.193219231871352378309267116852, −11.12166913587761968288957689389, −10.510796938142103293361379798603, −10.120040414892755976367654929755, −9.36716803158813563262960332972, −8.322281943205201088552787029674, −7.90128692841973624614141761977, −7.037587121731051984569093600506, −6.36430841889541800679700547074, −5.74107007560457653011205894125, −4.57419563597941751827835456046, −3.76906202060134961179519968897, −3.12033851614141465463647409661, −2.9101496595079521918018229587, −1.73554473515313608376744328622, −1.14163746946837820566132199531, −0.04889209080055815714253260056, 1.56672825540673038268180296788, 2.45781754044563327675329492407, 3.44177399980589017280102644715, 3.97354223201796460933482885163, 4.68813495427929934927281092612, 5.33893668448245397155117245140, 5.89312303485900755308012693111, 6.75919525600104885667403459998, 7.77863001429961162364228360215, 8.27148723828165208877884330965, 8.84665216458265606730716065730, 9.4314888029945145265226765576, 9.78230315591083684915803315783, 11.093625830691885607837130109219, 11.87510033707949066315777834839, 12.50354579295226403444366077568, 13.18010540586394481576295574498, 13.79854263911060420990065607268, 14.368371680459356045415925372840, 15.31467396337325908707097908279, 15.49202150577734020773293978455, 16.161591088635998227008549752420, 16.71827015642159268460398254723, 17.25051348741638547042685402558, 18.17444107934697175254426851003

Graph of the $Z$-function along the critical line