Properties

Degree $1$
Conductor $6017$
Sign $0.0784 + 0.996i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.909 − 0.415i)2-s + (−0.983 + 0.178i)3-s + (0.655 − 0.755i)4-s + (−0.335 + 0.942i)5-s + (−0.821 + 0.570i)6-s + (0.411 + 0.911i)7-s + (0.282 − 0.959i)8-s + (0.936 − 0.351i)9-s + (0.0862 + 0.996i)10-s + (−0.509 + 0.860i)12-s + (0.995 + 0.0896i)13-s + (0.753 + 0.657i)14-s + (0.161 − 0.986i)15-s + (−0.141 − 0.989i)16-s + (0.762 + 0.647i)17-s + (0.705 − 0.708i)18-s + ⋯
L(s,χ)  = 1  + (0.909 − 0.415i)2-s + (−0.983 + 0.178i)3-s + (0.655 − 0.755i)4-s + (−0.335 + 0.942i)5-s + (−0.821 + 0.570i)6-s + (0.411 + 0.911i)7-s + (0.282 − 0.959i)8-s + (0.936 − 0.351i)9-s + (0.0862 + 0.996i)10-s + (−0.509 + 0.860i)12-s + (0.995 + 0.0896i)13-s + (0.753 + 0.657i)14-s + (0.161 − 0.986i)15-s + (−0.141 − 0.989i)16-s + (0.762 + 0.647i)17-s + (0.705 − 0.708i)18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 6017 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.0784 + 0.996i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 6017 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.0784 + 0.996i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(6017\)    =    \(11 \cdot 547\)
Sign: $0.0784 + 0.996i$
Motivic weight: \(0\)
Character: $\chi_{6017} (503, \cdot )$
Sato-Tate group: $\mu(910)$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 6017,\ (0:\ ),\ 0.0784 + 0.996i)\)

Particular Values

\(L(\chi,\frac{1}{2})\) \(\approx\) \(1.849012596 + 1.709237365i\)
\(L(\frac12,\chi)\) \(\approx\) \(1.849012596 + 1.709237365i\)
\(L(\chi,1)\) \(\approx\) \(1.454544198 + 0.2675180904i\)
\(L(1,\chi)\) \(\approx\) \(1.454544198 + 0.2675180904i\)

Euler product

   \(L(\chi,s) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)
   \(L(s,\chi) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.312999091239431263848841315697, −16.76252352654210094788221688558, −16.29756267812581903556440153529, −15.70875823471399911791434793154, −15.12892423376695773392689586358, −13.96474060832621020583777376533, −13.645260478550753557607736331132, −12.92689108661068237225054283659, −12.401507221986829759412808328215, −11.69563105530125407991569904502, −11.15554491901962218170348192776, −10.63992060616938277627084058252, −9.64237708556196640055711229034, −8.57715947344219765045496853432, −8.025677043970118103373261954497, −7.17467038849073140248435524393, −6.83745537546158269413252604014, −5.838415666432535701341860562211, −5.26844283030303215821372286650, −4.66824955659834017325161735311, −4.13238795618326938793297010981, −3.41501591678763896233160065815, −2.20912951322147829693151236704, −1.1761250897964479240566354611, −0.57176065596621767003561871711, 1.29207970516334030281263685530, 1.634794702198249207798498847765, 2.94522922757945342025049399033, 3.4031214565184730709934081967, 4.17081422189849877404623653116, 5.030413915608926462199736886908, 5.61088321141411159125668597597, 6.26785617278065504026431359488, 6.67607999820462328869309854810, 7.63786072963186327748432051258, 8.4264137368444954997966176188, 9.57060323922670024450943763381, 10.26595160035859943542231786237, 10.7835654543389792764726998167, 11.33987901930079221148035186116, 12.042357865259285346522325109723, 12.23927282350519093674822863405, 13.21113847986956123105284463149, 13.93614268820038100819706849285, 14.80030094262040497581840966350, 15.04545936020821174166513828149, 15.90806142653181407681406083716, 16.196689936555851210783019244497, 17.22763997484815602757224801335, 18.13552176219794061428308735940

Graph of the $Z$-function along the critical line