Properties

Degree 1
Conductor $ 11 \cdot 547 $
Sign $0.835 + 0.548i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.443 − 0.896i)2-s + (0.309 − 0.951i)3-s + (−0.607 + 0.794i)4-s + (0.485 + 0.873i)5-s + (−0.989 + 0.144i)6-s + (0.715 + 0.698i)7-s + (0.981 + 0.192i)8-s + (−0.809 − 0.587i)9-s + (0.568 − 0.822i)10-s + (0.568 + 0.822i)12-s + (−0.809 − 0.587i)13-s + (0.309 − 0.951i)14-s + (0.981 − 0.192i)15-s + (−0.262 − 0.964i)16-s + (0.995 + 0.0965i)17-s + (−0.168 + 0.985i)18-s + ⋯
L(s,χ)  = 1  + (−0.443 − 0.896i)2-s + (0.309 − 0.951i)3-s + (−0.607 + 0.794i)4-s + (0.485 + 0.873i)5-s + (−0.989 + 0.144i)6-s + (0.715 + 0.698i)7-s + (0.981 + 0.192i)8-s + (−0.809 − 0.587i)9-s + (0.568 − 0.822i)10-s + (0.568 + 0.822i)12-s + (−0.809 − 0.587i)13-s + (0.309 − 0.951i)14-s + (0.981 − 0.192i)15-s + (−0.262 − 0.964i)16-s + (0.995 + 0.0965i)17-s + (−0.168 + 0.985i)18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 6017 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.835 + 0.548i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 6017 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.835 + 0.548i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(6017\)    =    \(11 \cdot 547\)
\( \varepsilon \)  =  $0.835 + 0.548i$
motivic weight  =  \(0\)
character  :  $\chi_{6017} (3210, \cdot )$
Sato-Tate  :  $\mu(65)$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((1,\ 6017,\ (0:\ ),\ 0.835 + 0.548i)\)
\(L(\chi,\frac{1}{2})\)  \(\approx\)  \(0.8875093374 + 0.2652851434i\)
\(L(\frac12,\chi)\)  \(\approx\)  \(0.8875093374 + 0.2652851434i\)
\(L(\chi,1)\)  \(\approx\)  \(0.8107050170 - 0.3364152791i\)
\(L(1,\chi)\)  \(\approx\)  \(0.8107050170 - 0.3364152791i\)

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−17.291209890509909645069521082372, −16.873141164403068093218526412508, −16.554034327424730034317840142830, −15.80098068352436290611220190128, −15.062191073147316123619777490631, −14.401926273807359622959073279820, −14.015483081313594757476204360929, −13.4448082965300376937840397280, −12.42349282820225920588760699152, −11.63243760891932928311008841826, −10.58279838921503495040786276113, −10.23854512090962340534449839376, −9.526666247048262530086558441886, −9.03330494195915326455290810835, −8.16296790938864825412477158257, −7.941699840076257820153660968571, −6.930232731057898605526029382229, −6.0752955873212955055695073681, −5.26996820692822034154465876698, −4.76674548769773775642075796787, −4.33034806897662364807110081023, −3.4298218260332481944052783730, −2.04716640740485281678658369649, −1.492804431844828601660059233988, −0.270678357970581945766405707913, 0.97766398034208781186103000665, 1.95532225219456335885293754424, 2.32002979521702051593992802116, 2.88801718367093029843635446366, 3.75286948212292565831139514489, 4.72669722343362087081210916474, 5.808594063406655533280788176441, 6.15978679472991728643159043098, 7.48919139874555301058912370460, 7.658625507069826713358594536772, 8.37284118906844584829107316473, 9.18870051695763917049783081684, 9.81211669193775642608051045320, 10.55242223337182515107157170097, 11.187561859878199972449456076694, 11.914927367835612013302585131624, 12.42811838660648290780292802855, 12.93979970224897239058247390225, 13.908022163565795733896186331255, 14.30270425566056642110141453757, 14.85819039634102185839340653803, 15.7045810524190994244687377713, 17.089647729686950602920018122017, 17.31502673112729874461917380683, 17.92877446567596269373109665919

Graph of the $Z$-function along the critical line