Properties

Degree 1
Conductor 569
Sign $0.937 - 0.347i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.826 − 0.562i)2-s + (−0.878 + 0.477i)3-s + (0.367 + 0.930i)4-s + (−0.952 − 0.304i)5-s + (0.995 + 0.0993i)6-s + (−0.850 + 0.525i)7-s + (0.219 − 0.975i)8-s + (0.544 − 0.839i)9-s + (0.616 + 0.787i)10-s + (0.0552 + 0.998i)11-s + (−0.766 − 0.641i)12-s + (0.997 − 0.0663i)13-s + (0.999 + 0.0442i)14-s + (0.982 − 0.186i)15-s + (−0.730 + 0.683i)16-s + (−0.714 − 0.699i)17-s + ⋯
L(s,χ)  = 1  + (−0.826 − 0.562i)2-s + (−0.878 + 0.477i)3-s + (0.367 + 0.930i)4-s + (−0.952 − 0.304i)5-s + (0.995 + 0.0993i)6-s + (−0.850 + 0.525i)7-s + (0.219 − 0.975i)8-s + (0.544 − 0.839i)9-s + (0.616 + 0.787i)10-s + (0.0552 + 0.998i)11-s + (−0.766 − 0.641i)12-s + (0.997 − 0.0663i)13-s + (0.999 + 0.0442i)14-s + (0.982 − 0.186i)15-s + (−0.730 + 0.683i)16-s + (−0.714 − 0.699i)17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 569 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (0.937 - 0.347i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 569 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (0.937 - 0.347i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(569\)
\( \varepsilon \)  =  $0.937 - 0.347i$
motivic weight  =  \(0\)
character  :  $\chi_{569} (30, \cdot )$
Sato-Tate  :  $\mu(568)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 569,\ (1:\ ),\ 0.937 - 0.347i)$
$L(\chi,\frac{1}{2})$  $\approx$  $0.2536302277 - 0.04549265380i$
$L(\frac12,\chi)$  $\approx$  $0.2536302277 - 0.04549265380i$
$L(\chi,1)$  $\approx$  0.3631952655 + 0.005167801231i
$L(1,\chi)$  $\approx$  0.3631952655 + 0.005167801231i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−23.27294726777420831752245400292, −22.70246765082039414655531912198, −21.605204560691852603328791241352, −20.19530844599929681388755949174, −19.31114794621237525454965982642, −18.94506519170119834275820878357, −18.17378080730161640361029394795, −16.95296827609963114710985973844, −16.64674644349731946958788178205, −15.70967267299107256570014181724, −15.09215399613322566748622321965, −13.6077792878784587382454730727, −12.99402779056492273992661572177, −11.563784994924709924241924101666, −10.98937178839899598909465894312, −10.4448332965549111883526446500, −9.02241834783816246217034280213, −8.17924625162688633990435965519, −7.2117288191748639675926549441, −6.49755768813380552264019669623, −5.89176350549643325104483356136, −4.47206597165650849350078975753, −3.27232547909718993921849198785, −1.557761687782416215695577400951, −0.37864733863508845128125792575, 0.26815937493923865369200487077, 1.69192707272272227919161874583, 3.24667427342183085888628672680, 4.0212160872861297643544463997, 5.07683320687668466911638932888, 6.57196380100115923260984327468, 7.115857585735666945393443952206, 8.58512423509706843874820595400, 9.13388562620415222545474623355, 10.17709453279612369535119128888, 10.96642774577189932518220912941, 11.741364592167187579691657817571, 12.52572083802605338784107323903, 13.03014102789553126444860890425, 15.124747624187452037290481006312, 15.66719034262839460010044640125, 16.37982505412989330982262835566, 17.07274736062055512482144987651, 18.140525851524485626523147989795, 18.72642828312215465347146130522, 19.642579603419815976780523603021, 20.55021803728610705659809891220, 21.08902555720437141789159913875, 22.353012165887246857490025237608, 22.735446238749720584350878003520

Graph of the $Z$-function along the critical line