Properties

Degree 1
Conductor 569
Sign $0.937 + 0.347i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.826 + 0.562i)2-s + (−0.878 − 0.477i)3-s + (0.367 − 0.930i)4-s + (−0.952 + 0.304i)5-s + (0.995 − 0.0993i)6-s + (−0.850 − 0.525i)7-s + (0.219 + 0.975i)8-s + (0.544 + 0.839i)9-s + (0.616 − 0.787i)10-s + (0.0552 − 0.998i)11-s + (−0.766 + 0.641i)12-s + (0.997 + 0.0663i)13-s + (0.999 − 0.0442i)14-s + (0.982 + 0.186i)15-s + (−0.730 − 0.683i)16-s + (−0.714 + 0.699i)17-s + ⋯
L(s,χ)  = 1  + (−0.826 + 0.562i)2-s + (−0.878 − 0.477i)3-s + (0.367 − 0.930i)4-s + (−0.952 + 0.304i)5-s + (0.995 − 0.0993i)6-s + (−0.850 − 0.525i)7-s + (0.219 + 0.975i)8-s + (0.544 + 0.839i)9-s + (0.616 − 0.787i)10-s + (0.0552 − 0.998i)11-s + (−0.766 + 0.641i)12-s + (0.997 + 0.0663i)13-s + (0.999 − 0.0442i)14-s + (0.982 + 0.186i)15-s + (−0.730 − 0.683i)16-s + (−0.714 + 0.699i)17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 569 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (0.937 + 0.347i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 569 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (0.937 + 0.347i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(569\)
\( \varepsilon \)  =  $0.937 + 0.347i$
motivic weight  =  \(0\)
character  :  $\chi_{569} (19, \cdot )$
Sato-Tate  :  $\mu(568)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 569,\ (1:\ ),\ 0.937 + 0.347i)$
$L(\chi,\frac{1}{2})$  $\approx$  $0.2536302277 + 0.04549265380i$
$L(\frac12,\chi)$  $\approx$  $0.2536302277 + 0.04549265380i$
$L(\chi,1)$  $\approx$  0.3631952655 + 0.005167801231i
$L(1,\chi)$  $\approx$  0.3631952655 + 0.005167801231i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−22.735446238749720584350878003520, −22.353012165887246857490025237608, −21.08902555720437141789159913875, −20.55021803728610705659809891220, −19.642579603419815976780523603021, −18.72642828312215465347146130522, −18.140525851524485626523147989795, −17.07274736062055512482144987651, −16.37982505412989330982262835566, −15.66719034262839460010044640125, −15.124747624187452037290481006312, −13.03014102789553126444860890425, −12.52572083802605338784107323903, −11.741364592167187579691657817571, −10.96642774577189932518220912941, −10.17709453279612369535119128888, −9.13388562620415222545474623355, −8.58512423509706843874820595400, −7.115857585735666945393443952206, −6.57196380100115923260984327468, −5.07683320687668466911638932888, −4.0212160872861297643544463997, −3.24667427342183085888628672680, −1.69192707272272227919161874583, −0.26815937493923865369200487077, 0.37864733863508845128125792575, 1.557761687782416215695577400951, 3.27232547909718993921849198785, 4.47206597165650849350078975753, 5.89176350549643325104483356136, 6.49755768813380552264019669623, 7.2117288191748639675926549441, 8.17924625162688633990435965519, 9.02241834783816246217034280213, 10.4448332965549111883526446500, 10.98937178839899598909465894312, 11.563784994924709924241924101666, 12.99402779056492273992661572177, 13.6077792878784587382454730727, 15.09215399613322566748622321965, 15.70967267299107256570014181724, 16.64674644349731946958788178205, 16.95296827609963114710985973844, 18.17378080730161640361029394795, 18.94506519170119834275820878357, 19.31114794621237525454965982642, 20.19530844599929681388755949174, 21.605204560691852603328791241352, 22.70246765082039414655531912198, 23.27294726777420831752245400292

Graph of the $Z$-function along the critical line