Properties

Degree 1
Conductor $ 5 \cdot 11 $
Sign $0.822 + 0.568i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.309 + 0.951i)2-s + (0.809 − 0.587i)3-s + (−0.809 − 0.587i)4-s + (0.309 + 0.951i)6-s + (0.809 + 0.587i)7-s + (0.809 − 0.587i)8-s + (0.309 − 0.951i)9-s − 12-s + (−0.309 + 0.951i)13-s + (−0.809 + 0.587i)14-s + (0.309 + 0.951i)16-s + (−0.309 − 0.951i)17-s + (0.809 + 0.587i)18-s + (−0.809 + 0.587i)19-s + 21-s + ⋯
L(s,χ)  = 1  + (−0.309 + 0.951i)2-s + (0.809 − 0.587i)3-s + (−0.809 − 0.587i)4-s + (0.309 + 0.951i)6-s + (0.809 + 0.587i)7-s + (0.809 − 0.587i)8-s + (0.309 − 0.951i)9-s − 12-s + (−0.309 + 0.951i)13-s + (−0.809 + 0.587i)14-s + (0.309 + 0.951i)16-s + (−0.309 − 0.951i)17-s + (0.809 + 0.587i)18-s + (−0.809 + 0.587i)19-s + 21-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.822 + 0.568i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 55 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.822 + 0.568i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(55\)    =    \(5 \cdot 11\)
\( \varepsilon \)  =  $0.822 + 0.568i$
motivic weight  =  \(0\)
character  :  $\chi_{55} (14, \cdot )$
Sato-Tate  :  $\mu(10)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 55,\ (0:\ ),\ 0.822 + 0.568i)$
$L(\chi,\frac{1}{2})$  $\approx$  $0.8874743712 + 0.2767391312i$
$L(\frac12,\chi)$  $\approx$  $0.8874743712 + 0.2767391312i$
$L(\chi,1)$  $\approx$  1.011577065 + 0.2605437617i
$L(1,\chi)$  $\approx$  1.011577065 + 0.2605437617i

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−32.66927930203567886792795546578, −31.81034538560283580572690419, −30.50156761839451478970885696910, −30.0308861233454996119172354424, −28.28061126150332577244767077548, −27.39209869300254187503985681420, −26.54503379534831116338914749913, −25.47123473733393843780748900906, −23.83410430655072663162705406317, −22.21038148346257492280334461505, −21.29612351392970691878104624523, −20.22773333891576712674693451361, −19.560915611623006716801028801319, −18.00536664344550772669720782242, −16.87329332309144695559088663513, −15.10686625051322361705336870071, −13.93976664877493562105266950396, −12.74727808666989897976320159439, −10.96742498374779404832200407491, −10.189293925504757294865244026834, −8.706775998583808217769480336450, −7.756868236998142656203630729035, −4.82770641940531080252354209309, −3.61939879193141055867415378074, −1.99667011438049429979367967689, 1.971448959592245139543691351071, 4.39560333377502517978436128830, 6.1739096343193584086025142671, 7.5457066593740960106807721353, 8.55445084281779651911283230611, 9.65923360035358874998508347667, 11.8118252658395820773634604224, 13.45661926681055242809637216702, 14.46384017437891978261890577709, 15.34875904381573049807370530811, 16.90877920733558120179152523960, 18.26731912462664013309545939453, 18.892029377946614583073811785488, 20.36299935200787931132788284315, 21.8228304933916129897753590640, 23.48762508913542538158525165617, 24.397791196807406163186359610, 25.15794649645322535915054069286, 26.28831306322172644779501255201, 27.25716882727417861287977812895, 28.55214878570009260981190798841, 30.07806436953977988913687765728, 31.46852442707584676679714354135, 31.822265518769710825734035303849, 33.49948260830639171807634334188

Graph of the $Z$-function along the critical line