Properties

Degree $1$
Conductor $547$
Sign $0.173 + 0.984i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.998 + 0.0460i)2-s + (0.623 + 0.781i)3-s + (0.995 + 0.0919i)4-s + (−0.376 + 0.926i)5-s + (0.586 + 0.809i)6-s + (0.0287 − 0.999i)7-s + (0.990 + 0.137i)8-s + (−0.222 + 0.974i)9-s + (−0.418 + 0.908i)10-s + (−0.996 − 0.0804i)11-s + (0.548 + 0.835i)12-s + (0.826 + 0.563i)13-s + (0.0747 − 0.997i)14-s + (−0.958 + 0.283i)15-s + (0.983 + 0.183i)16-s + (0.785 + 0.618i)17-s + ⋯
L(s,χ)  = 1  + (0.998 + 0.0460i)2-s + (0.623 + 0.781i)3-s + (0.995 + 0.0919i)4-s + (−0.376 + 0.926i)5-s + (0.586 + 0.809i)6-s + (0.0287 − 0.999i)7-s + (0.990 + 0.137i)8-s + (−0.222 + 0.974i)9-s + (−0.418 + 0.908i)10-s + (−0.996 − 0.0804i)11-s + (0.548 + 0.835i)12-s + (0.826 + 0.563i)13-s + (0.0747 − 0.997i)14-s + (−0.958 + 0.283i)15-s + (0.983 + 0.183i)16-s + (0.785 + 0.618i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 547 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.173 + 0.984i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 547 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.173 + 0.984i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(547\)
Sign: $0.173 + 0.984i$
Motivic weight: \(0\)
Character: $\chi_{547} (16, \cdot )$
Sato-Tate group: $\mu(273)$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 547,\ (0:\ ),\ 0.173 + 0.984i)\)

Particular Values

\(L(\chi,\frac{1}{2})\) \(\approx\) \(2.309050988 + 1.938713125i\)
\(L(\frac12,\chi)\) \(\approx\) \(2.309050988 + 1.938713125i\)
\(L(\chi,1)\) \(\approx\) \(1.987121635 + 0.8893160048i\)
\(L(1,\chi)\) \(\approx\) \(1.987121635 + 0.8893160048i\)

Euler product

   \(L(\chi,s) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)
   \(L(s,\chi) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−23.21455198156181349328980438730, −22.68711025390059999347213102831, −21.06451039878507384551956909014, −20.88207374761069576016642845461, −20.181566964207168016534624195381, −18.863471239752697619290659852583, −18.66661357730191396410010829681, −17.17971016369863555516930808658, −16.091121622256320814274590584687, −15.39135508328092241811262752137, −14.710669054236133997656326513165, −13.51462083914875348796389619798, −12.99469890941751460118574000157, −12.24380547986002134492155368162, −11.681926158929198365257979966895, −10.32279164009935985580651424718, −8.984392323985518909488366651274, −8.09670739683805960692945419035, −7.50688453603223083574492495969, −6.01806537524714280789517100276, −5.521456534741074817989539876392, −4.29173697481699171173179463906, −3.142251235529028049252020260251, −2.326381766286294117216806448853, −1.13471040273619889380740294795, 1.87130629060698603437726738720, 3.183821451961082570314937280445, 3.580032574253390872734887840670, 4.5704674239730498850155436119, 5.58543863820512894377806166720, 6.91858961663162798662582390317, 7.52625901725943436697425227097, 8.57323650341400689907073375331, 10.0976779895749648087963933626, 10.82675992975547080732394834092, 11.158798619387073094876088382151, 12.68219539913839300340697144831, 13.69983126500693029448150814111, 14.10463828747762204354162099966, 15.051726764969024549248429487011, 15.70940351718220401370045577114, 16.39062720471312237263479618906, 17.47217826904599059999429518834, 18.96361966512700327584621193635, 19.52668320153678011367594901072, 20.49197017636061614790739413760, 21.195625809575647717961915338695, 21.76361786528947352705392214725, 22.80702894156129960764209651019, 23.46286695356962749589554803483

Graph of the $Z$-function along the critical line