# Properties

 Degree $1$ Conductor $52$ Sign $0.289 + 0.957i$ Motivic weight $0$ Primitive yes Self-dual no Analytic rank $0$

# Learn more about

## Dirichlet series

 L(χ,s)  = 1 − 3-s + i·5-s + i·7-s + 9-s + i·11-s − i·15-s − 17-s − i·19-s − i·21-s + 23-s − 25-s − 27-s + 29-s − i·31-s − i·33-s + ⋯
 L(s,χ)  = 1 − 3-s + i·5-s + i·7-s + 9-s + i·11-s − i·15-s − 17-s − i·19-s − i·21-s + 23-s − 25-s − 27-s + 29-s − i·31-s − i·33-s + ⋯

## Functional equation

\begin{aligned}\Lambda(\chi,s)=\mathstrut & 52 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.289 + 0.957i)\, \Lambda(\overline{\chi},1-s) \end{aligned}
\begin{aligned}\Lambda(s,\chi)=\mathstrut & 52 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.289 + 0.957i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}

## Invariants

 Degree: $$1$$ Conductor: $$52$$    =    $$2^{2} \cdot 13$$ Sign: $0.289 + 0.957i$ Motivic weight: $$0$$ Character: $\chi_{52} (47, \cdot )$ Sato-Tate group: $\mu(4)$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(1,\ 52,\ (0:\ ),\ 0.289 + 0.957i)$$

## Particular Values

 $$L(\chi,\frac{1}{2})$$ $$\approx$$ $$0.5033173096 + 0.3734896139i$$ $$L(\frac12,\chi)$$ $$\approx$$ $$0.5033173096 + 0.3734896139i$$ $$L(\chi,1)$$ $$\approx$$ $$0.7157601546 + 0.2503442995i$$ $$L(1,\chi)$$ $$\approx$$ $$0.7157601546 + 0.2503442995i$$

## Euler product

$$L(\chi,s) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}$$
$$L(s,\chi) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−33.10193252347745468394589453081, −32.47813064747680807844138012846, −30.9306955094768431766537413031, −29.345218281904380607806380559328, −28.99577057186073347048304725178, −27.50405089756677712528147837792, −26.78329039729185853220037753732, −24.8590560711499689881313598121, −23.914021253384195962872171717245, −23.037720836862041473159974388438, −21.63271063182726164916860186874, −20.54428061797321589975637400113, −19.171117199400549206948670200505, −17.57941766952002539763570152377, −16.72703652485657162139907040153, −15.86186627230425363820986821410, −13.76759567466002012390614326394, −12.691435314523025139420155035766, −11.362660144913273090735013107041, −10.200815103974160151747549203593, −8.51183994585278096512360741982, −6.83168493688293992638838880850, −5.35699686341634239458041907286, −4.07396783475317205072826012576, −1.03855202346103598078575020783, 2.42206321115837043014575335913, 4.640535876840447962826454937334, 6.15978730408381988654908335204, 7.23159114549101019373834421258, 9.35767548911718519646635573235, 10.7701869326978400234264166023, 11.75670724151034048905801251293, 13.042531542370043693581191092322, 14.947665516908693707124256508405, 15.73604014685437549145276867868, 17.52224141715457118683231417200, 18.17425756703542261728447595996, 19.40462303564601644646425107951, 21.31976357707914301391926078331, 22.27973293448546190858383162662, 23.03059733238106065017315218596, 24.426260635854402500225042643267, 25.703916255785621391722325201917, 26.99953108037411679421030764739, 28.16182780514288828767367685231, 29.00229578408942354103183746248, 30.31542162811635099575021981413, 31.17737029832455341324780052493, 32.92191208698429055071187161718, 33.811098587390012161795304273594