Properties

Degree 1
Conductor $ 2^{2} \cdot 13 $
Sign $-0.872 + 0.488i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.5 + 0.866i)3-s − 5-s + (−0.5 + 0.866i)7-s + (−0.5 + 0.866i)9-s + (−0.5 − 0.866i)11-s + (−0.5 − 0.866i)15-s + (−0.5 + 0.866i)17-s + (−0.5 + 0.866i)19-s − 21-s + (0.5 + 0.866i)23-s + 25-s − 27-s + (−0.5 − 0.866i)29-s + 31-s + (0.5 − 0.866i)33-s + ⋯
L(s,χ)  = 1  + (0.5 + 0.866i)3-s − 5-s + (−0.5 + 0.866i)7-s + (−0.5 + 0.866i)9-s + (−0.5 − 0.866i)11-s + (−0.5 − 0.866i)15-s + (−0.5 + 0.866i)17-s + (−0.5 + 0.866i)19-s − 21-s + (0.5 + 0.866i)23-s + 25-s − 27-s + (−0.5 − 0.866i)29-s + 31-s + (0.5 − 0.866i)33-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 52 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (-0.872 + 0.488i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 52 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (-0.872 + 0.488i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(52\)    =    \(2^{2} \cdot 13\)
\( \varepsilon \)  =  $-0.872 + 0.488i$
motivic weight  =  \(0\)
character  :  $\chi_{52} (43, \cdot )$
Sato-Tate  :  $\mu(6)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 52,\ (1:\ ),\ -0.872 + 0.488i)$
$L(\chi,\frac{1}{2})$  $\approx$  $0.2331095218 + 0.8928365098i$
$L(\frac12,\chi)$  $\approx$  $0.2331095218 + 0.8928365098i$
$L(\chi,1)$  $\approx$  0.7489374876 + 0.4453009972i
$L(1,\chi)$  $\approx$  0.7489374876 + 0.4453009972i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−32.481024431824059343273458810675, −31.3752001694123878548435491825, −30.56394468655111312957162213550, −29.49960624060977585547451880135, −28.26686356275220088147916738544, −26.731169794879473922442152768303, −25.93932912475006906005037151823, −24.550415951237547923113758727197, −23.45275916012093043079372044715, −22.76046840473330069991586894729, −20.54517686192423355565595791586, −19.851086194850863417343038108245, −18.79823869674210963747076080809, −17.51322739124647853466441198870, −15.9615674953239894473787771758, −14.7147151006330032927465202943, −13.30222370085365280038006603741, −12.355784484830705618601164162938, −10.86282576597423750337601518927, −9.059951294348558988831548255129, −7.57133020025015155670851824802, −6.83625055426313733961191276370, −4.388888380289097892188239982809, −2.75958767291290139367481725149, −0.48614862184044773147667988502, 2.85996825068437282631126703886, 4.1204496298414977802048061276, 5.82367572759192724853854517167, 7.98536572701750626561173370992, 8.929434658819177238132818911401, 10.47617913204730531525878394447, 11.73685896141873834825034309878, 13.292762590665398899677856169, 14.99696501081263347052604337304, 15.63997907802044154233509387413, 16.744418837291928501890046569989, 18.84991074966535044148330586240, 19.52949609315111347571800825820, 20.96088708450845907096000102266, 21.95430530112894974300839969570, 23.139773838616662421060747483144, 24.568400587829136468191818310, 25.859376625123765100625167960985, 26.84817782481030006899895881102, 27.80047936977226205495883992922, 28.86256242067640018309477291507, 30.618140311887031979488397161626, 31.71582827299190179796649799935, 32.10194079608307526453355591017, 33.67293673466283136575945359220

Graph of the $Z$-function along the critical line