Properties

Degree 1
Conductor $ 3 \cdot 17 $
Sign $1$
Motivic weight 0
Primitive yes
Self-dual yes
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  − 2-s + 4-s + 5-s − 7-s − 8-s − 10-s + 11-s + 13-s + 14-s + 16-s + 19-s + 20-s − 22-s + 23-s + 25-s − 26-s − 28-s + 29-s − 31-s − 32-s − 35-s − 37-s − 38-s − 40-s + 41-s + 43-s + 44-s + ⋯
L(s,χ)  = 1  − 2-s + 4-s + 5-s − 7-s − 8-s − 10-s + 11-s + 13-s + 14-s + 16-s + 19-s + 20-s − 22-s + 23-s + 25-s − 26-s − 28-s + 29-s − 31-s − 32-s − 35-s − 37-s − 38-s − 40-s + 41-s + 43-s + 44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & \, \Lambda(\chi,1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 51 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & \, \Lambda(1-s,\chi) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(51\)    =    \(3 \cdot 17\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(0\)
character  :  $\chi_{51} (50, \cdot )$
Sato-Tate  :  $\mu(2)$
primitive  :  yes
self-dual  :  yes
analytic rank  =  \(0\)
Selberg data  =  \((1,\ 51,\ (1:\ ),\ 1)\)
\(L(\chi,\frac{1}{2})\)  \(\approx\)  \(1.170343006\)
\(L(\frac12,\chi)\)  \(\approx\)  \(1.170343006\)
\(L(\chi,1)\)  \(\approx\)  \(0.8798219249\)
\(L(1,\chi)\)  \(\approx\)  \(0.8798219249\)

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−33.09869394216564081159271016679, −32.79324138370125404493943352195, −30.70184816406532019097135596160, −29.46215763381464506773198725632, −28.817917596257666582009131918744, −27.640015665735691382734448525715, −26.26235870190654948660914894829, −25.45301265391250462208825059694, −24.59344331055706125032484083793, −22.76267450500585636101443204126, −21.44366500133620954157291946194, −20.23558873162871550875155429587, −19.06464386143708039029066352161, −17.92663682454653922236327297602, −16.83154612982430641502771913646, −15.804262608644272073404801132213, −14.0996495675154905864822826984, −12.60915778160047693382425905940, −11.00335155908981631145070351494, −9.68157968562557281317528926504, −8.90344823883406652361740796753, −6.92450645055312231767231855101, −5.92634090948389307180183727785, −3.13894144062052336872300193917, −1.26789064670733730699447432749, 1.26789064670733730699447432749, 3.13894144062052336872300193917, 5.92634090948389307180183727785, 6.92450645055312231767231855101, 8.90344823883406652361740796753, 9.68157968562557281317528926504, 11.00335155908981631145070351494, 12.60915778160047693382425905940, 14.0996495675154905864822826984, 15.804262608644272073404801132213, 16.83154612982430641502771913646, 17.92663682454653922236327297602, 19.06464386143708039029066352161, 20.23558873162871550875155429587, 21.44366500133620954157291946194, 22.76267450500585636101443204126, 24.59344331055706125032484083793, 25.45301265391250462208825059694, 26.26235870190654948660914894829, 27.640015665735691382734448525715, 28.817917596257666582009131918744, 29.46215763381464506773198725632, 30.70184816406532019097135596160, 32.79324138370125404493943352195, 33.09869394216564081159271016679

Graph of the $Z$-function along the critical line