Properties

Degree 1
Conductor $ 7^{2} $
Sign $0.942 - 0.335i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.826 − 0.563i)2-s + (−0.733 + 0.680i)3-s + (0.365 − 0.930i)4-s + (0.955 + 0.294i)5-s + (−0.222 + 0.974i)6-s + (−0.222 − 0.974i)8-s + (0.0747 − 0.997i)9-s + (0.955 − 0.294i)10-s + (0.0747 + 0.997i)11-s + (0.365 + 0.930i)12-s + (−0.900 − 0.433i)13-s + (−0.900 + 0.433i)15-s + (−0.733 − 0.680i)16-s + (−0.988 − 0.149i)17-s + (−0.5 − 0.866i)18-s + (−0.5 + 0.866i)19-s + ⋯
L(s,χ)  = 1  + (0.826 − 0.563i)2-s + (−0.733 + 0.680i)3-s + (0.365 − 0.930i)4-s + (0.955 + 0.294i)5-s + (−0.222 + 0.974i)6-s + (−0.222 − 0.974i)8-s + (0.0747 − 0.997i)9-s + (0.955 − 0.294i)10-s + (0.0747 + 0.997i)11-s + (0.365 + 0.930i)12-s + (−0.900 − 0.433i)13-s + (−0.900 + 0.433i)15-s + (−0.733 − 0.680i)16-s + (−0.988 − 0.149i)17-s + (−0.5 − 0.866i)18-s + (−0.5 + 0.866i)19-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.942 - 0.335i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 49 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.942 - 0.335i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(49\)    =    \(7^{2}\)
\( \varepsilon \)  =  $0.942 - 0.335i$
motivic weight  =  \(0\)
character  :  $\chi_{49} (25, \cdot )$
Sato-Tate  :  $\mu(21)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 49,\ (0:\ ),\ 0.942 - 0.335i)$
$L(\chi,\frac{1}{2})$  $\approx$  $1.122815745 - 0.1938615830i$
$L(\frac12,\chi)$  $\approx$  $1.122815745 - 0.1938615830i$
$L(\chi,1)$  $\approx$  1.280466911 - 0.1806316226i
$L(1,\chi)$  $\approx$  1.280466911 - 0.1806316226i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−33.91181740593369290783369780544, −32.84547753665400128967984795879, −31.76872881951831081908138836272, −30.33800838877746614975288374930, −29.474373037088049719356341633936, −28.61335759319650900622284794465, −26.72273894166387383440253122905, −25.337739661909230008336026520459, −24.36005746307786329279093367574, −23.71580821367981595569932653160, −21.988045959991187279434883995742, −21.72961554918514272153972861333, −19.80789257991871975676818409348, −18.007496912436223229873483196186, −17.093602146792523730652118848442, −16.11921480034142001995943515043, −14.23381942366225381251726984000, −13.31569894688231298831225380389, −12.2605184342386236118323180501, −10.87798358591115479113488115584, −8.693319548284248728291819716807, −6.95438298346737261907270838384, −5.956319884684112567375983290985, −4.75403887340930169710031481621, −2.29455115051436058876020397693, 2.24339800929317109496992518107, 4.2263532877540372808585200766, 5.47640029502383725092379230024, 6.65890100171355105377608803012, 9.69962263339120392198709477488, 10.318736691759783264319546253761, 11.76618446952053708685270123667, 12.947518065591294161054323178972, 14.480764046614879481990767539, 15.43997528020018259022189405218, 17.10766479957415847740792639573, 18.22384584387758560590029146188, 20.065815936928411652954614701835, 21.109587981789763952545930366350, 22.176714330660254953078481240760, 22.74698673172678379862502231044, 24.20598491182213247613786569680, 25.54698009659237326018041340098, 27.15709383241467038400905555058, 28.368839807944114467393672477788, 29.219700139528940594552965133898, 30.12109595893963834065689889641, 31.61467828956052643899433273280, 32.74631799844587404996258560454, 33.52325351169627776602221447245

Graph of the $Z$-function along the critical line