Properties

Degree 1
Conductor $ 5 \cdot 97 $
Sign $-0.891 - 0.453i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.382 + 0.923i)2-s + (−0.923 − 0.382i)3-s + (−0.707 + 0.707i)4-s i·6-s + (−0.195 + 0.980i)7-s + (−0.923 − 0.382i)8-s + (0.707 + 0.707i)9-s + (−0.382 + 0.923i)11-s + (0.923 − 0.382i)12-s + (0.980 − 0.195i)13-s + (−0.980 + 0.195i)14-s i·16-s + (−0.980 + 0.195i)17-s + (−0.382 + 0.923i)18-s + (0.980 − 0.195i)19-s + ⋯
L(s,χ)  = 1  + (0.382 + 0.923i)2-s + (−0.923 − 0.382i)3-s + (−0.707 + 0.707i)4-s i·6-s + (−0.195 + 0.980i)7-s + (−0.923 − 0.382i)8-s + (0.707 + 0.707i)9-s + (−0.382 + 0.923i)11-s + (0.923 − 0.382i)12-s + (0.980 − 0.195i)13-s + (−0.980 + 0.195i)14-s i·16-s + (−0.980 + 0.195i)17-s + (−0.382 + 0.923i)18-s + (0.980 − 0.195i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 485 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (-0.891 - 0.453i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 485 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (-0.891 - 0.453i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(485\)    =    \(5 \cdot 97\)
\( \varepsilon \)  =  $-0.891 - 0.453i$
motivic weight  =  \(0\)
character  :  $\chi_{485} (52, \cdot )$
Sato-Tate  :  $\mu(32)$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((1,\ 485,\ (0:\ ),\ -0.891 - 0.453i)\)
\(L(\chi,\frac{1}{2})\)  \(\approx\)  \(-0.1337713194 + 0.5584714084i\)
\(L(\frac12,\chi)\)  \(\approx\)  \(-0.1337713194 + 0.5584714084i\)
\(L(\chi,1)\)  \(\approx\)  \(0.5572118216 + 0.4858324319i\)
\(L(1,\chi)\)  \(\approx\)  \(0.5572118216 + 0.4858324319i\)

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−23.06496527978647612908857725718, −22.419543289607035664510755460681, −21.61983643766934446091248070916, −20.76683404409846017688379195579, −20.165078793331233583341572561233, −19.02125334977402438021224939161, −18.18018845574758823894378710011, −17.49235346290541785633477079625, −16.23309476014006949157925188675, −15.80270373951938599604745471693, −14.29972507804157748044413504764, −13.57574127277161992377996076021, −12.78734020346080569139592096575, −11.680620531319380589288915154, −10.97772695573916447645973610251, −10.43722626636696070961875275786, −9.48562802663880585966994782140, −8.3726532148497172617828814257, −6.769452798168850180235459655605, −5.93885696158811902014110276425, −4.90926300254011418629574460002, −3.99438719147930555385758745012, −3.20309585465908522295703981776, −1.48042999088806864618569723697, −0.32435492856821058590491222736, 1.77311974663575027321183042675, 3.299988908298202234653717507478, 4.6845781434412366519704822485, 5.40455070284777627067503948306, 6.24661868650966318277020375242, 7.035721022242887618139335203565, 8.032632971707358871913243545152, 9.04208724406668483464096063497, 10.12878918632922749388700138155, 11.47410615154238217826064230046, 12.1847509683086928744307086524, 13.05528164451243122363286989317, 13.67297043886863680620863330180, 15.12372566804636715548677531765, 15.69268109196966430688082752618, 16.33588830344129173041115141504, 17.544423122729391577338058987964, 18.07071427756220014059222914070, 18.59611412411970467777511371001, 20.01056276036699314367639905528, 21.265493706541979430684336244271, 22.1069044310946394789201678989, 22.56659927830806059441818396429, 23.5405294091156628380617309102, 24.044631692246392278104012580181

Graph of the $Z$-function along the critical line