# Properties

 Degree 1 Conductor $3^{2} \cdot 5$ Sign $0.173 - 0.984i$ Motivic weight 0 Primitive yes Self-dual no Analytic rank 0

# Learn more about

## Dirichlet series

 L(χ,s)  = 1 + (0.5 − 0.866i)2-s + (−0.5 − 0.866i)4-s + (0.5 − 0.866i)7-s − 8-s + (−0.5 + 0.866i)11-s + (0.5 + 0.866i)13-s + (−0.5 − 0.866i)14-s + (−0.5 + 0.866i)16-s − 17-s + 19-s + (0.5 + 0.866i)22-s + (0.5 + 0.866i)23-s + 26-s − 28-s + (−0.5 + 0.866i)29-s + ⋯
 L(s,χ)  = 1 + (0.5 − 0.866i)2-s + (−0.5 − 0.866i)4-s + (0.5 − 0.866i)7-s − 8-s + (−0.5 + 0.866i)11-s + (0.5 + 0.866i)13-s + (−0.5 − 0.866i)14-s + (−0.5 + 0.866i)16-s − 17-s + 19-s + (0.5 + 0.866i)22-s + (0.5 + 0.866i)23-s + 26-s − 28-s + (−0.5 + 0.866i)29-s + ⋯

## Functional equation

\begin{aligned}\Lambda(\chi,s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.173 - 0.984i)\, \Lambda(\overline{\chi},1-s) \end{aligned}
\begin{aligned}\Lambda(s,\chi)=\mathstrut & 45 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.173 - 0.984i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}

## Invariants

 $$d$$ = $$1$$ $$N$$ = $$45$$    =    $$3^{2} \cdot 5$$ $$\varepsilon$$ = $0.173 - 0.984i$ motivic weight = $$0$$ character : $\chi_{45} (4, \cdot )$ Sato-Tate : $\mu(6)$ primitive : yes self-dual : no analytic rank = $$0$$ Selberg data = $$(1,\ 45,\ (0:\ ),\ 0.173 - 0.984i)$$ $$L(\chi,\frac{1}{2})$$ $$\approx$$ $$0.7698993003 - 0.6460222189i$$ $$L(\frac12,\chi)$$ $$\approx$$ $$0.7698993003 - 0.6460222189i$$ $$L(\chi,1)$$ $$\approx$$ $$1.017581897 - 0.5750616325i$$ $$L(1,\chi)$$ $$\approx$$ $$1.017581897 - 0.5750616325i$$

## Euler product

\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}
\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}

## Imaginary part of the first few zeros on the critical line

−34.6407752538296581875675095088, −33.45017423453234422579422601726, −32.34815851101980637749458547809, −31.28019394667002352521629623836, −30.40169614290229086472191382603, −28.76973431101492980994027655010, −27.323149853576368594941849747822, −26.292789499238961684723885885414, −24.89906916403401597878017476639, −24.26111227348730409067430609118, −22.81647949664846069167383640733, −21.78380647276188230474172592563, −20.64500112815866818819262540216, −18.595454476190985320021057180235, −17.663685799203339890063230028939, −16.086899998376124901253161876223, −15.223538835595963485719999274803, −13.85689829113214396106696827719, −12.65410094964942889104495091245, −11.157388556562852776233813918069, −8.94674731380379868426180375490, −7.90112655391428801320618356990, −6.129883513417807024140256986869, −4.986080434395568954318652182475, −3.036966339852487507043603700014, 1.79552054022879431760879518606, 3.82246261151636447130164381576, 5.12318840361089192244794614766, 7.13391008819698984650180343164, 9.164117984764452576349564931991, 10.5720086863329850717008945500, 11.62991026140771176012653565518, 13.16345457638311621835241422061, 14.12768025380590189428613636865, 15.54684695455579445900125710702, 17.42732327354157056402994216485, 18.61117112335464692242434707410, 20.09918331143247803638648325371, 20.7941643938762227796889730662, 22.16099686270101297940073783120, 23.370601086317253676682092149431, 24.20305329339874632344423794230, 26.10599953904193255973805087584, 27.304690595780937403189399033935, 28.51586223071429141720772834289, 29.476846827760444864649099007665, 30.77918517993744363590499976324, 31.33888421974699914084788635818, 33.125777829606636990567130411103, 33.468385069609883259802732782051