Properties

Label 1-43-43.23-r0-0-0
Degree $1$
Conductor $43$
Sign $-0.974 - 0.224i$
Analytic cond. $0.199691$
Root an. cond. $0.199691$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.222 + 0.974i)2-s + (−0.733 + 0.680i)3-s + (−0.900 − 0.433i)4-s + (−0.988 − 0.149i)5-s + (−0.5 − 0.866i)6-s + (−0.5 + 0.866i)7-s + (0.623 − 0.781i)8-s + (0.0747 − 0.997i)9-s + (0.365 − 0.930i)10-s + (−0.900 + 0.433i)11-s + (0.955 − 0.294i)12-s + (0.365 + 0.930i)13-s + (−0.733 − 0.680i)14-s + (0.826 − 0.563i)15-s + (0.623 + 0.781i)16-s + (−0.988 + 0.149i)17-s + ⋯
L(s)  = 1  + (−0.222 + 0.974i)2-s + (−0.733 + 0.680i)3-s + (−0.900 − 0.433i)4-s + (−0.988 − 0.149i)5-s + (−0.5 − 0.866i)6-s + (−0.5 + 0.866i)7-s + (0.623 − 0.781i)8-s + (0.0747 − 0.997i)9-s + (0.365 − 0.930i)10-s + (−0.900 + 0.433i)11-s + (0.955 − 0.294i)12-s + (0.365 + 0.930i)13-s + (−0.733 − 0.680i)14-s + (0.826 − 0.563i)15-s + (0.623 + 0.781i)16-s + (−0.988 + 0.149i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.974 - 0.224i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.974 - 0.224i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(43\)
Sign: $-0.974 - 0.224i$
Analytic conductor: \(0.199691\)
Root analytic conductor: \(0.199691\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{43} (23, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 43,\ (0:\ ),\ -0.974 - 0.224i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(-0.03489669618 + 0.3066401376i\)
\(L(\frac12)\) \(\approx\) \(-0.03489669618 + 0.3066401376i\)
\(L(1)\) \(\approx\) \(0.3069948015 + 0.3691771416i\)
\(L(1)\) \(\approx\) \(0.3069948015 + 0.3691771416i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad43 \( 1 \)
good2 \( 1 + (-0.222 + 0.974i)T \)
3 \( 1 + (-0.733 + 0.680i)T \)
5 \( 1 + (-0.988 - 0.149i)T \)
7 \( 1 + (-0.5 + 0.866i)T \)
11 \( 1 + (-0.900 + 0.433i)T \)
13 \( 1 + (0.365 + 0.930i)T \)
17 \( 1 + (-0.988 + 0.149i)T \)
19 \( 1 + (0.0747 + 0.997i)T \)
23 \( 1 + (0.826 + 0.563i)T \)
29 \( 1 + (-0.733 - 0.680i)T \)
31 \( 1 + (0.955 - 0.294i)T \)
37 \( 1 + (-0.5 - 0.866i)T \)
41 \( 1 + (-0.222 + 0.974i)T \)
47 \( 1 + (-0.900 - 0.433i)T \)
53 \( 1 + (0.365 - 0.930i)T \)
59 \( 1 + (0.623 + 0.781i)T \)
61 \( 1 + (0.955 + 0.294i)T \)
67 \( 1 + (0.0747 + 0.997i)T \)
71 \( 1 + (0.826 - 0.563i)T \)
73 \( 1 + (0.365 + 0.930i)T \)
79 \( 1 + (-0.5 + 0.866i)T \)
83 \( 1 + (-0.733 + 0.680i)T \)
89 \( 1 + (-0.733 + 0.680i)T \)
97 \( 1 + (-0.900 + 0.433i)T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−34.48528394990567031650749671359, −32.68074275174775144446186251651, −31.217864601348866161350787844806, −30.324461576019623745111001515582, −29.336825209211590434891155212228, −28.36549029129074765978383429226, −27.19694857740121948591766800711, −26.14564916342342734533114042328, −24.05248676612151045609989013852, −23.06168325732325853828218242497, −22.30372646986335564071857275906, −20.44747987938863179700395734040, −19.443133613421742782324470384772, −18.44000409440558201877045208917, −17.24429786828670950180094466176, −15.838543155392810162598078154329, −13.48805972583942463148234000946, −12.71265420851421804403822927401, −11.20157876611161662444454862370, −10.56912856909675178424211327165, −8.34357261680893085057755851413, −7.05881320317048283816271504797, −4.82148810372987725658039663499, −3.0485822611409087390100742034, −0.529152786233597396561026093606, 4.034754976978269690880841748404, 5.369142871812428125291054494866, 6.78914749528408869797025572592, 8.497237356435967123512938854303, 9.771338142306875066036435570211, 11.42788122230091777212412363674, 12.88828436974980551642735455272, 15.03844779621102605322336903782, 15.73089390545477927478650708991, 16.6094291134842821002334728310, 18.11312838127546948339321421250, 19.19917715700349906741026053283, 21.129479441409714658083579623080, 22.5944303719705488862379795798, 23.29318266455219131472296751558, 24.467294216428494220755867030340, 26.06376796851191892237217302748, 26.92165968636260530587315280252, 28.16061115118675539547319554939, 28.723211101021416582206269032386, 31.282189756132228631398801866146, 31.77981033617351490970883782818, 33.27126773490391371408950117183, 34.056154859023755683525699800480, 35.20216715465300766704862070626

Graph of the $Z$-function along the critical line