# Properties

 Degree 1 Conductor 41 Sign $0.936 - 0.350i$ Motivic weight 0 Primitive yes Self-dual no Analytic rank 0

# Related objects

## Dirichlet series

 L(χ,s)  = 1 + (−0.309 − 0.951i)2-s + i·3-s + (−0.809 + 0.587i)4-s + (0.809 − 0.587i)5-s + (0.951 − 0.309i)6-s + (0.951 + 0.309i)7-s + (0.809 + 0.587i)8-s − 9-s + (−0.809 − 0.587i)10-s + (0.587 − 0.809i)11-s + (−0.587 − 0.809i)12-s + (−0.951 + 0.309i)13-s − i·14-s + (0.587 + 0.809i)15-s + (0.309 − 0.951i)16-s + (−0.587 + 0.809i)17-s + ⋯
 L(s,χ)  = 1 + (−0.309 − 0.951i)2-s + i·3-s + (−0.809 + 0.587i)4-s + (0.809 − 0.587i)5-s + (0.951 − 0.309i)6-s + (0.951 + 0.309i)7-s + (0.809 + 0.587i)8-s − 9-s + (−0.809 − 0.587i)10-s + (0.587 − 0.809i)11-s + (−0.587 − 0.809i)12-s + (−0.951 + 0.309i)13-s − i·14-s + (0.587 + 0.809i)15-s + (0.309 − 0.951i)16-s + (−0.587 + 0.809i)17-s + ⋯

## Functional equation

\begin{aligned} \Lambda(\chi,s)=\mathstrut & 41 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.936 - 0.350i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\n
\begin{aligned} \Lambda(s,\chi)=\mathstrut & 41 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.936 - 0.350i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\n

## Invariants

 $$d$$ = $$1$$ $$N$$ = $$41$$ $$\varepsilon$$ = $0.936 - 0.350i$ motivic weight = $$0$$ character : $\chi_{41} (8, \cdot )$ Sato-Tate : $\mu(20)$ primitive : yes self-dual : no analytic rank = 0 Selberg data = $(1,\ 41,\ (0:\ ),\ 0.936 - 0.350i)$ $L(\chi,\frac{1}{2})$ $\approx$ $0.7435439189 - 0.1345510543i$ $L(\frac12,\chi)$ $\approx$ $0.7435439189 - 0.1345510543i$ $L(\chi,1)$ $\approx$ 0.8931869235 - 0.1502334416i $L(1,\chi)$ $\approx$ 0.8931869235 - 0.1502334416i

## Euler product

\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}
\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}

## Imaginary part of the first few zeros on the critical line

−34.84492989689333102317541957834, −33.95613810425839318272241592875, −33.10146037457388053761408012685, −31.45628429844859988943835137431, −30.306550888717162240916960185701, −29.20897375568625454194628132740, −27.71017837077292800105384028705, −26.441417119097055665488293433323, −25.1670951451865974099914391556, −24.59798499334746443881884336054, −23.257395760578834406164080694836, −22.18543097112789863657222626694, −20.151327344362252934944742615763, −18.65591191911217618291139135153, −17.69059005594408796905291170035, −17.06184641998449843548822419318, −14.72664683044227520258768975765, −14.21333029945417462397308716551, −12.71936315991670235423090371567, −10.73621239579423010521725766665, −9.07324282943668093729834757162, −7.489132257117115969338429871623, −6.622952248093256589101809671853, −5.02594343695939778134044442951, −1.89908354839906079690618186824, 2.095984176596019545908096785206, 4.14555596102408205293084735003, 5.41753766607884998636530345220, 8.50942939244626961642751580413, 9.337749704534744348573341967730, 10.70486116927952795098884052571, 11.83901716729304691336568531210, 13.54315473037126072317189103010, 14.8402301159347132340257963630, 16.92082342003892062103749149686, 17.42856347690545647644025557591, 19.29178886821563968130562691150, 20.56407650283102621488637791309, 21.56053533825359507522446065814, 22.01850755786501914209671214564, 24.09807514478065329394380530916, 25.67540043635038621557104725823, 26.977041435894928190630199617386, 27.801099391160869055849538294056, 28.79980384276252059826318779723, 29.95171962965405071761449567937, 31.471710979620936211167202800411, 32.29744784477114078932880658513, 33.59011263178657020691959958479, 34.89976552232428313903304403539