Properties

Degree 1
Conductor 41
Sign $-0.996 + 0.0817i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.951 + 0.309i)2-s + (−0.707 + 0.707i)3-s + (0.809 − 0.587i)4-s + (0.587 + 0.809i)5-s + (0.453 − 0.891i)6-s + (0.453 + 0.891i)7-s + (−0.587 + 0.809i)8-s i·9-s + (−0.809 − 0.587i)10-s + (−0.987 + 0.156i)11-s + (−0.156 + 0.987i)12-s + (−0.891 − 0.453i)13-s + (−0.707 − 0.707i)14-s + (−0.987 − 0.156i)15-s + (0.309 − 0.951i)16-s + (0.156 + 0.987i)17-s + ⋯
L(s,χ)  = 1  + (−0.951 + 0.309i)2-s + (−0.707 + 0.707i)3-s + (0.809 − 0.587i)4-s + (0.587 + 0.809i)5-s + (0.453 − 0.891i)6-s + (0.453 + 0.891i)7-s + (−0.587 + 0.809i)8-s i·9-s + (−0.809 − 0.587i)10-s + (−0.987 + 0.156i)11-s + (−0.156 + 0.987i)12-s + (−0.891 − 0.453i)13-s + (−0.707 − 0.707i)14-s + (−0.987 − 0.156i)15-s + (0.309 − 0.951i)16-s + (0.156 + 0.987i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 41 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (-0.996 + 0.0817i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 41 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (-0.996 + 0.0817i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(41\)
\( \varepsilon \)  =  $-0.996 + 0.0817i$
motivic weight  =  \(0\)
character  :  $\chi_{41} (17, \cdot )$
Sato-Tate  :  $\mu(40)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 41,\ (1:\ ),\ -0.996 + 0.0817i)$
$L(\chi,\frac{1}{2})$  $\approx$  $0.02189373088 + 0.5346498201i$
$L(\frac12,\chi)$  $\approx$  $0.02189373088 + 0.5346498201i$
$L(\chi,1)$  $\approx$  0.4297786542 + 0.3463863244i
$L(1,\chi)$  $\approx$  0.4297786542 + 0.3463863244i

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−34.0882667806105283575367781102, −33.51958542818512577873556730689, −31.52496460133282447721533974184, −29.86620377344137075094035674567, −29.345176666217347782450445782254, −28.30564198729144139608756527076, −27.19716710255724369231982022257, −25.75433531578781128538102281519, −24.48539560966881737968298997275, −23.64754526941719597401581895608, −21.67799997304079203658729214851, −20.54482166388406079217892803875, −19.27978795786291281624129989908, −17.875436043665925471843836293293, −17.16328473623324839723520581870, −16.15657030942219820122699113254, −13.64107924468574698096208565519, −12.44210520553825014089723071204, −11.12160307633187294725403450967, −9.85587801878180304501912522529, −8.11854568902230660386407017369, −6.934983987725556939516575951816, −5.05315019567408128064878194230, −2.0389195648619784410001961874, −0.46976774120970056758449707372, 2.416037374089381033131630599089, 5.310917012728344034681837960303, 6.427379553722475068638470976334, 8.292826136034057803731004116544, 9.99536487554827543452106031783, 10.63287270294607065640455096157, 12.15153010444679290977033698638, 14.77489653230356944744903800998, 15.42328492919489071798789916710, 17.04285912742853771434533347311, 17.906014105523921481089733085966, 18.92752960035971797156307468423, 20.867234351083986959419244970716, 21.78777150726642654278836780254, 23.24771625188047442851100483818, 24.71360378548312418759092813098, 26.00266402332160196862383885799, 26.89339204095101650144871112935, 28.09623855486877897855118288210, 28.90635672895350266638744749924, 30.11859503089220953306562589733, 32.05733956444826926642905907380, 33.36609028470677344036579769341, 34.41620255612556305048202506955, 34.546978161698735161295302864833

Graph of the $Z$-function along the critical line