Properties

Degree 1
Conductor $ 37 \cdot 109 $
Sign $0.999 + 0.000318i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.5 − 0.866i)2-s + (−0.766 − 0.642i)3-s + (−0.5 + 0.866i)4-s + (−0.984 − 0.173i)5-s + (−0.173 + 0.984i)6-s + (0.173 − 0.984i)7-s + 8-s + (0.173 + 0.984i)9-s + (0.342 + 0.939i)10-s + (−0.342 + 0.939i)11-s + (0.939 − 0.342i)12-s + (0.173 − 0.984i)13-s + (−0.939 + 0.342i)14-s + (0.642 + 0.766i)15-s + (−0.5 − 0.866i)16-s + (0.5 + 0.866i)17-s + ⋯
L(s,χ)  = 1  + (−0.5 − 0.866i)2-s + (−0.766 − 0.642i)3-s + (−0.5 + 0.866i)4-s + (−0.984 − 0.173i)5-s + (−0.173 + 0.984i)6-s + (0.173 − 0.984i)7-s + 8-s + (0.173 + 0.984i)9-s + (0.342 + 0.939i)10-s + (−0.342 + 0.939i)11-s + (0.939 − 0.342i)12-s + (0.173 − 0.984i)13-s + (−0.939 + 0.342i)14-s + (0.642 + 0.766i)15-s + (−0.5 − 0.866i)16-s + (0.5 + 0.866i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 4033 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.999 + 0.000318i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 4033 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.999 + 0.000318i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(4033\)    =    \(37 \cdot 109\)
\( \varepsilon \)  =  $0.999 + 0.000318i$
motivic weight  =  \(0\)
character  :  $\chi_{4033} (547, \cdot )$
Sato-Tate  :  $\mu(36)$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((1,\ 4033,\ (0:\ ),\ 0.999 + 0.000318i)\)
\(L(\chi,\frac{1}{2})\)  \(\approx\)  \(0.5402509509 + 8.593305000\times10^{-5}i\)
\(L(\frac12,\chi)\)  \(\approx\)  \(0.5402509509 + 8.593305000\times10^{-5}i\)
\(L(\chi,1)\)  \(\approx\)  \(0.4781001704 - 0.2624307241i\)
\(L(1,\chi)\)  \(\approx\)  \(0.4781001704 - 0.2624307241i\)

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−18.3942061933353177750213651952, −17.919922258552851294507535919665, −16.71592466470250764524813812546, −16.433071299304785913150897875066, −15.79004409900410236781557760097, −15.476728977140161057024491711898, −14.49861796985215003490956128687, −14.166069979694772430525702730822, −12.96094306653387633546141669308, −12.00605994224230946494193818570, −11.44745638488160252849188840627, −11.01476515189551668980218022784, −10.067336849730510936788441470332, −9.32193420544954525876774827492, −8.73726548136317241476374506230, −8.08219550567882735290105140439, −7.18118955144965838511542239021, −6.52709173399925478468451579475, −5.76213692141563399107171080470, −5.107381404986118849969049231482, −4.53425353933786065794987332207, −3.58678329994771412372360646096, −2.69444363251435373913478530416, −1.19325355277571643500403069321, −0.305839941358278785979927152041, 0.920664458485966946245043739546, 1.255554446438222066073543363271, 2.407522756103227697221493441036, 3.46964854033160052549321225123, 4.011523335500524054905408874299, 4.94927969947213725587932495720, 5.5129112076305575792714893075, 6.976840060909138835394707478151, 7.4799289087569362286856860348, 7.7957385163957834095858124910, 8.61870999478072185810514999212, 9.73136045112435461517632067342, 10.48025019879362312818994199708, 10.84633774311663324162666374171, 11.60249565079105731999082192944, 12.22506800079728252750062541930, 12.833347773814530777688349807093, 13.25581165740686924455186497019, 14.17297289081348400510871917426, 15.20327993560589797914969792868, 15.991065866849099855775473078048, 16.719525984406206637757781319, 17.257444328270786396716705909909, 17.87106465288707951447164014693, 18.419944538167620787889272397558

Graph of the $Z$-function along the critical line