Dirichlet series
L(χ,s) = 1 | + (0.939 + 0.342i)2-s + (−0.835 + 0.549i)3-s + (0.766 + 0.642i)4-s + (0.993 + 0.116i)5-s + (−0.973 + 0.230i)6-s + (0.597 − 0.802i)7-s + (0.5 + 0.866i)8-s + (0.396 − 0.918i)9-s + (0.893 + 0.448i)10-s + (0.893 − 0.448i)11-s + (−0.993 − 0.116i)12-s + (−0.597 + 0.802i)13-s + (0.835 − 0.549i)14-s + (−0.893 + 0.448i)15-s + (0.173 + 0.984i)16-s + (−0.173 − 0.984i)17-s + ⋯ |
L(s,χ) = 1 | + (0.939 + 0.342i)2-s + (−0.835 + 0.549i)3-s + (0.766 + 0.642i)4-s + (0.993 + 0.116i)5-s + (−0.973 + 0.230i)6-s + (0.597 − 0.802i)7-s + (0.5 + 0.866i)8-s + (0.396 − 0.918i)9-s + (0.893 + 0.448i)10-s + (0.893 − 0.448i)11-s + (−0.993 − 0.116i)12-s + (−0.597 + 0.802i)13-s + (0.835 − 0.549i)14-s + (−0.893 + 0.448i)15-s + (0.173 + 0.984i)16-s + (−0.173 − 0.984i)17-s + ⋯ |
Functional equation
\[\begin{aligned}
\Lambda(\chi,s)=\mathstrut & 4033 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr
=\mathstrut & (0.283 + 0.958i)\, \Lambda(\overline{\chi},1-s)
\end{aligned}
\]
\[\begin{aligned}
\Lambda(s,\chi)=\mathstrut & 4033 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr
=\mathstrut & (0.283 + 0.958i)\, \Lambda(1-s,\overline{\chi})
\end{aligned}
\]
Invariants
\( d \) | = | \(1\) |
\( N \) | = | \(4033\) = \(37 \cdot 109\) |
\( \varepsilon \) | = | $0.283 + 0.958i$ |
motivic weight | = | \(0\) |
character | : | $\chi_{4033} (3061, \cdot )$ |
Sato-Tate | : | $\mu(54)$ |
primitive | : | yes |
self-dual | : | no |
analytic rank | = | 0 |
Selberg data | = | $(1,\ 4033,\ (0:\ ),\ 0.283 + 0.958i)$ |
$L(\chi,\frac{1}{2})$ | $\approx$ | $2.985335505 + 2.230410823i$ |
$L(\frac12,\chi)$ | $\approx$ | $2.985335505 + 2.230410823i$ |
$L(\chi,1)$ | $\approx$ | 1.844220358 + 0.7732023360i |
$L(1,\chi)$ | $\approx$ | 1.844220358 + 0.7732023360i |
Euler product
\[\begin{aligned}
L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}
\end{aligned}\]
\[\begin{aligned}
L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}
\end{aligned}\]