Properties

Degree $1$
Conductor $4033$
Sign $-0.985 + 0.167i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.342 + 0.939i)2-s + (−0.973 − 0.230i)3-s + (−0.766 + 0.642i)4-s + (−0.549 + 0.835i)5-s + (−0.116 − 0.993i)6-s + (−0.0581 + 0.998i)7-s + (−0.866 − 0.5i)8-s + (0.893 + 0.448i)9-s + (−0.973 − 0.230i)10-s + (0.973 − 0.230i)11-s + (0.893 − 0.448i)12-s + (−0.998 − 0.0581i)13-s + (−0.957 + 0.286i)14-s + (0.727 − 0.686i)15-s + (0.173 − 0.984i)16-s + (0.984 + 0.173i)17-s + ⋯
L(s,χ)  = 1  + (0.342 + 0.939i)2-s + (−0.973 − 0.230i)3-s + (−0.766 + 0.642i)4-s + (−0.549 + 0.835i)5-s + (−0.116 − 0.993i)6-s + (−0.0581 + 0.998i)7-s + (−0.866 − 0.5i)8-s + (0.893 + 0.448i)9-s + (−0.973 − 0.230i)10-s + (0.973 − 0.230i)11-s + (0.893 − 0.448i)12-s + (−0.998 − 0.0581i)13-s + (−0.957 + 0.286i)14-s + (0.727 − 0.686i)15-s + (0.173 − 0.984i)16-s + (0.984 + 0.173i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 4033 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (-0.985 + 0.167i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 4033 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (-0.985 + 0.167i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(4033\)    =    \(37 \cdot 109\)
Sign: $-0.985 + 0.167i$
Motivic weight: \(0\)
Character: $\chi_{4033} (2177, \cdot )$
Sato-Tate group: $\mu(108)$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 4033,\ (1:\ ),\ -0.985 + 0.167i)\)

Particular Values

\(L(\chi,\frac{1}{2})\) \(\approx\) \(0.1081525177 + 1.283620673i\)
\(L(\frac12,\chi)\) \(\approx\) \(0.1081525177 + 1.283620673i\)
\(L(\chi,1)\) \(\approx\) \(0.5651971808 + 0.5476009392i\)
\(L(1,\chi)\) \(\approx\) \(0.5651971808 + 0.5476009392i\)

Euler product

   \(L(\chi,s) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)
   \(L(s,\chi) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.77035890647955470435331336266, −17.29471137223181818246499512692, −16.738973981866203249681095307914, −16.20416283208761847270819076656, −14.99844375331341513334633142827, −14.68787602592519578045605137909, −13.65137353469091474039530654327, −12.83678090884035980994631537349, −12.48274485298440011987372503894, −11.69810925172154921111832556273, −11.342838808662289839236021488498, −10.42232461057426756561686179293, −9.89996821172064399716277025024, −9.23336711983973119914726195811, −8.4165980578624254118462566169, −7.25497895642892240642772643059, −6.74144409075206616448816540512, −5.64514039665613612205198262886, −4.900351507647146995956536139087, −4.40688267665233703557552616769, −3.91283202454085727700757132662, −2.96114576044219170733271328180, −1.632592574447347856591330853142, −0.92449162934498978986002610947, −0.3997520025501705778773849213, 0.57316603233148402458707462812, 1.88737806108128972541639845476, 2.980615879483346759111976983896, 3.78893805717253733110068998359, 4.53270623570913962477121347934, 5.47591580643876010510695327964, 5.931706552829892887390466722205, 6.61058267097206917588367998675, 7.26842207146862911042771705141, 7.88115090032092682457194502964, 8.68865576253491573415287263387, 9.70576966190808553194453099239, 10.207120635056351094154397551073, 11.479807706611692028246382121, 11.808862358242827017714984993277, 12.364208675317383939721038661436, 13.07554346496125961339294442327, 14.07483772512305115882649722172, 14.786356408693327801142821037548, 15.13630057363698310491437272058, 15.88453805231152552967827149645, 16.64059302200816370111207990203, 17.1770805339104657260156034210, 17.72429211846837679483024983833, 18.66831650896784642707642574288

Graph of the $Z$-function along the critical line