Properties

Degree 1
Conductor $ 37 \cdot 109 $
Sign $0.0459 - 0.998i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.642 − 0.766i)2-s + (−0.286 − 0.957i)3-s + (−0.173 − 0.984i)4-s + (0.0581 − 0.998i)5-s + (−0.918 − 0.396i)6-s + (0.893 − 0.448i)7-s + (−0.866 − 0.5i)8-s + (−0.835 + 0.549i)9-s + (−0.727 − 0.686i)10-s + (−0.727 + 0.686i)11-s + (−0.893 + 0.448i)12-s + (0.448 + 0.893i)13-s + (0.230 − 0.973i)14-s + (−0.973 + 0.230i)15-s + (−0.939 + 0.342i)16-s + (0.342 + 0.939i)17-s + ⋯
L(s,χ)  = 1  + (0.642 − 0.766i)2-s + (−0.286 − 0.957i)3-s + (−0.173 − 0.984i)4-s + (0.0581 − 0.998i)5-s + (−0.918 − 0.396i)6-s + (0.893 − 0.448i)7-s + (−0.866 − 0.5i)8-s + (−0.835 + 0.549i)9-s + (−0.727 − 0.686i)10-s + (−0.727 + 0.686i)11-s + (−0.893 + 0.448i)12-s + (0.448 + 0.893i)13-s + (0.230 − 0.973i)14-s + (−0.973 + 0.230i)15-s + (−0.939 + 0.342i)16-s + (0.342 + 0.939i)17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 4033 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (0.0459 - 0.998i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 4033 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (0.0459 - 0.998i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(4033\)    =    \(37 \cdot 109\)
\( \varepsilon \)  =  $0.0459 - 0.998i$
motivic weight  =  \(0\)
character  :  $\chi_{4033} (1877, \cdot )$
Sato-Tate  :  $\mu(108)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 4033,\ (1:\ ),\ 0.0459 - 0.998i)$
$L(\chi,\frac{1}{2})$  $\approx$  $1.159592169 - 1.107498919i$
$L(\frac12,\chi)$  $\approx$  $1.159592169 - 1.107498919i$
$L(\chi,1)$  $\approx$  0.7199237374 - 0.9237909146i
$L(1,\chi)$  $\approx$  0.7199237374 - 0.9237909146i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−18.35041974727670783968957311242, −17.69523424303117252931527494253, −17.00406649386287910898757990069, −16.12271671829853611252506668683, −15.73965433188935618731022065112, −14.99628192791711013155771760032, −14.61775644860833337375473513589, −13.91651469648889159815839462802, −13.298756806661101148748886999, −12.0757186878230066344291106532, −11.71224716437267759794090062694, −10.76297729156943173009648254904, −10.49509924941381250676725347223, −9.351275980540921527253419858627, −8.60591743809846116742403983650, −7.858501477125048545303820098715, −7.33919164442412492901556311319, −6.15873009821695486611512454676, −5.531527414548430061857957839600, −5.36888208846002148194824768220, −4.2423872063189847734405246663, −3.42490333734496968129844020477, −3.03432052168501728829268154111, −2.00451077306594659394981268193, −0.26064806895513814363934782340, 0.62063837359931519024860501172, 1.57436926910862909448327737236, 1.82327376062124346306348068315, 2.74446405742875379077520425746, 4.13280335290090373855163819707, 4.496842601748676606144029479631, 5.28590666470262703581881482689, 5.95444711893209960285508404766, 6.76652387919103977361600026739, 7.67253015893086512480679326890, 8.40600615511934659898481716427, 9.02941851944090187648645909010, 10.087973139343073527042183915496, 10.76140660919162206548221210476, 11.48094525958336845551293860789, 12.02488191828154724605484243333, 12.68697798724504903195162081797, 13.28681637165432886294642204166, 13.68131530059070116967604167546, 14.555579258308399885332899113490, 15.1367772963380061370007823802, 16.223013828132508697104702424955, 16.86036639625306886925567322970, 17.7016203538991678826009512433, 18.10856791041585035262789350291

Graph of the $Z$-function along the critical line