Dirichlet series
L(χ,s) = 1 | + (−0.939 + 0.342i)2-s + (−0.5 − 0.866i)3-s + (0.766 − 0.642i)4-s + 5-s + (0.766 + 0.642i)6-s + 7-s + (−0.5 + 0.866i)8-s + (−0.5 + 0.866i)9-s + (−0.939 + 0.342i)10-s + (−0.939 − 0.342i)11-s + (−0.939 − 0.342i)12-s + (−0.5 − 0.866i)13-s + (−0.939 + 0.342i)14-s + (−0.5 − 0.866i)15-s + (0.173 − 0.984i)16-s + (0.766 + 0.642i)17-s + ⋯ |
L(s,χ) = 1 | + (−0.939 + 0.342i)2-s + (−0.5 − 0.866i)3-s + (0.766 − 0.642i)4-s + 5-s + (0.766 + 0.642i)6-s + 7-s + (−0.5 + 0.866i)8-s + (−0.5 + 0.866i)9-s + (−0.939 + 0.342i)10-s + (−0.939 − 0.342i)11-s + (−0.939 − 0.342i)12-s + (−0.5 − 0.866i)13-s + (−0.939 + 0.342i)14-s + (−0.5 − 0.866i)15-s + (0.173 − 0.984i)16-s + (0.766 + 0.642i)17-s + ⋯ |
Functional equation
\[\begin{aligned}
\Lambda(\chi,s)=\mathstrut & 4033 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr
=\mathstrut & (0.284 + 0.958i)\, \Lambda(\overline{\chi},1-s)
\end{aligned}
\]
\[\begin{aligned}
\Lambda(s,\chi)=\mathstrut & 4033 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr
=\mathstrut & (0.284 + 0.958i)\, \Lambda(1-s,\overline{\chi})
\end{aligned}
\]
Invariants
\( d \) | = | \(1\) |
\( N \) | = | \(4033\) = \(37 \cdot 109\) |
\( \varepsilon \) | = | $0.284 + 0.958i$ |
motivic weight | = | \(0\) |
character | : | $\chi_{4033} (16, \cdot )$ |
Sato-Tate | : | $\mu(9)$ |
primitive | : | yes |
self-dual | : | no |
analytic rank | = | 0 |
Selberg data | = | $(1,\ 4033,\ (0:\ ),\ 0.284 + 0.958i)$ |
$L(\chi,\frac{1}{2})$ | $\approx$ | $0.6502129411 + 0.4853383274i$ |
$L(\frac12,\chi)$ | $\approx$ | $0.6502129411 + 0.4853383274i$ |
$L(\chi,1)$ | $\approx$ | 0.7059622677 + 0.003753982557i |
$L(1,\chi)$ | $\approx$ | 0.7059622677 + 0.003753982557i |
Euler product
\[\begin{aligned}
L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}
\end{aligned}\]
\[\begin{aligned}
L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}
\end{aligned}\]