Properties

Degree 1
Conductor $ 37 \cdot 109 $
Sign $0.0519 - 0.998i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.5 + 0.866i)4-s + (0.866 − 0.5i)5-s + (0.5 − 0.866i)6-s + (−0.5 − 0.866i)7-s + 8-s + (−0.5 + 0.866i)9-s + (−0.866 − 0.5i)10-s + (0.866 − 0.5i)11-s − 12-s + (−0.5 − 0.866i)13-s + (−0.5 + 0.866i)14-s + (0.866 + 0.5i)15-s + (−0.5 − 0.866i)16-s + (0.5 + 0.866i)17-s + ⋯
L(s,χ)  = 1  + (−0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.5 + 0.866i)4-s + (0.866 − 0.5i)5-s + (0.5 − 0.866i)6-s + (−0.5 − 0.866i)7-s + 8-s + (−0.5 + 0.866i)9-s + (−0.866 − 0.5i)10-s + (0.866 − 0.5i)11-s − 12-s + (−0.5 − 0.866i)13-s + (−0.5 + 0.866i)14-s + (0.866 + 0.5i)15-s + (−0.5 − 0.866i)16-s + (0.5 + 0.866i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 4033 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.0519 - 0.998i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 4033 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.0519 - 0.998i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(4033\)    =    \(37 \cdot 109\)
\( \varepsilon \)  =  $0.0519 - 0.998i$
motivic weight  =  \(0\)
character  :  $\chi_{4033} (1207, \cdot )$
Sato-Tate  :  $\mu(12)$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((1,\ 4033,\ (0:\ ),\ 0.0519 - 0.998i)\)
\(L(\chi,\frac{1}{2})\)  \(\approx\)  \(1.120536701 - 1.063763227i\)
\(L(\frac12,\chi)\)  \(\approx\)  \(1.120536701 - 1.063763227i\)
\(L(\chi,1)\)  \(\approx\)  \(0.9757752676 - 0.3288048127i\)
\(L(1,\chi)\)  \(\approx\)  \(0.9757752676 - 0.3288048127i\)

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−18.45168728308403987451437267799, −18.01397716874103697882715481019, −17.40898402030180433077279397180, −16.76245286575468155443747937578, −15.90421053339819557145807614481, −15.11046096580317477128119446132, −14.41337294663846291448772770239, −14.16789103940642282032868007268, −13.3883467190405836434482340775, −12.60180825640118598499237993138, −11.895104969613552719954554692409, −11.04372793519518122608712895130, −9.840930654867191685807316604, −9.38570979244443517947912373672, −9.085584508029104012072919108314, −8.14839870784110131042074961688, −7.22742704093980080509867481868, −6.74200579622712637997784096762, −6.27855484077349518889623152298, −5.54283570173634672386884310003, −4.633597883653233681441011991, −3.46311874481076447487336188244, −2.33837140259843939844107723352, −2.02020647480480776556236039668, −0.960017632914202236735408489260, 0.53994759311480281834018374295, 1.53912905465876797668198865067, 2.34491115229370398355802423652, 3.20842090843968420280697657685, 4.017629162804988625015991962352, 4.28562322867346483804471633387, 5.55134094315818785083126500438, 6.11852824469518238651567665316, 7.44207211419333985802177380169, 8.16246138450870994365397563372, 8.714505134763351700138862555833, 9.59194438183971521067098549214, 9.9943885526491243052812501060, 10.40831830487542990891894090423, 11.15773333761967149425986079136, 12.21051207436108495006385035202, 12.76379386389441980991148413010, 13.59937293058575846128606062639, 14.000076170389351036458604392225, 14.73695991942886930529493031659, 15.76470567266725228719824299952, 16.68770501394476713634124525855, 16.959226794171855043054059597457, 17.32329312668811270545003365610, 18.424640012354079093740437773550

Graph of the $Z$-function along the critical line