Properties

Degree 1
Conductor $ 3 \cdot 17 \cdot 79 $
Sign $-0.975 + 0.220i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.822 − 0.568i)2-s + (0.354 − 0.935i)4-s + (0.0603 − 0.998i)5-s + (0.517 + 0.855i)7-s + (−0.239 − 0.970i)8-s + (−0.517 − 0.855i)10-s + (−0.0603 − 0.998i)11-s + (0.354 − 0.935i)13-s + (0.911 + 0.410i)14-s + (−0.748 − 0.663i)16-s + (−0.992 + 0.120i)19-s + (−0.911 − 0.410i)20-s + (−0.616 − 0.787i)22-s + (0.707 + 0.707i)23-s + (−0.992 − 0.120i)25-s + (−0.239 − 0.970i)26-s + ⋯
L(s,χ)  = 1  + (0.822 − 0.568i)2-s + (0.354 − 0.935i)4-s + (0.0603 − 0.998i)5-s + (0.517 + 0.855i)7-s + (−0.239 − 0.970i)8-s + (−0.517 − 0.855i)10-s + (−0.0603 − 0.998i)11-s + (0.354 − 0.935i)13-s + (0.911 + 0.410i)14-s + (−0.748 − 0.663i)16-s + (−0.992 + 0.120i)19-s + (−0.911 − 0.410i)20-s + (−0.616 − 0.787i)22-s + (0.707 + 0.707i)23-s + (−0.992 − 0.120i)25-s + (−0.239 − 0.970i)26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 4029 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (-0.975 + 0.220i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 4029 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (-0.975 + 0.220i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(4029\)    =    \(3 \cdot 17 \cdot 79\)
\( \varepsilon \)  =  $-0.975 + 0.220i$
motivic weight  =  \(0\)
character  :  $\chi_{4029} (185, \cdot )$
Sato-Tate  :  $\mu(104)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 4029,\ (0:\ ),\ -0.975 + 0.220i)$
$L(\chi,\frac{1}{2})$  $\approx$  $-0.2488862848 - 2.232470398i$
$L(\frac12,\chi)$  $\approx$  $-0.2488862848 - 2.232470398i$
$L(\chi,1)$  $\approx$  1.187046729 - 1.055643409i
$L(1,\chi)$  $\approx$  1.187046729 - 1.055643409i

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−18.57668114693227674793965517920, −18.107079555380094229883101797601, −17.28967279332673251392503470789, −16.80180455067686871922870135293, −16.07262834325273380766276285878, −15.16149547050431480442656743320, −14.58466491565144533441497549686, −14.37430512058810552247702228686, −13.445761924495590359710495746581, −12.90388896052268504579305643192, −12.05148112110890558846370493961, −11.21691460213438840826149843867, −10.81648475873803540018190421317, −10.0198597824117309561231440901, −8.95127952392830928976183933098, −8.18846789186832359838892476201, −7.26302144783971310098437776370, −6.92541025138576335016579632304, −6.40422041758526817729633239625, −5.33936835097892619566045822181, −4.50041547125592018802322960702, −4.05760270763857304283925195681, −3.198541084517922696270749221286, −2.28070472038494570893692505210, −1.589476086206287694852887340272, 0.41955119103475543380092086270, 1.3957947932843180460588692605, 2.09404958894832982222968925889, 3.048054174319831425894539517218, 3.73376575388908872163518116280, 4.7045876122846418096565576928, 5.26540196978131408763435612748, 5.84749675574161931602006490253, 6.447531145420038454954208369914, 7.8387188232894580283580197959, 8.39745091986152297192908796481, 9.1189641566949800600738284273, 9.83224459499245907432331740996, 10.828044500648506756784301967800, 11.29915374251757402353181157414, 12.02771431997373497355746026356, 12.66683558533429327813616475745, 13.27670047705348097871205293231, 13.73967126720068379609675257882, 14.775156420278373837228823413075, 15.28340021131471658620997984174, 15.85144739360077784277460406668, 16.673878332111627305410234736319, 17.40044143489705741473293094556, 18.28746715152956500437580256857

Graph of the $Z$-function along the critical line