Properties

Degree 1
Conductor $ 2^{5} \cdot 5^{3} $
Sign $-0.996 - 0.0800i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.278 − 0.960i)3-s + (−0.809 − 0.587i)7-s + (−0.844 − 0.535i)9-s + (−0.917 + 0.397i)11-s + (0.218 + 0.975i)13-s + (−0.684 − 0.728i)17-s + (0.278 + 0.960i)19-s + (−0.790 + 0.612i)21-s + (−0.637 + 0.770i)23-s + (−0.750 + 0.661i)27-s + (−0.562 + 0.827i)29-s + (0.728 − 0.684i)31-s + (0.125 + 0.992i)33-s + (0.661 − 0.750i)37-s + (0.998 + 0.0627i)39-s + ⋯
L(s,χ)  = 1  + (0.278 − 0.960i)3-s + (−0.809 − 0.587i)7-s + (−0.844 − 0.535i)9-s + (−0.917 + 0.397i)11-s + (0.218 + 0.975i)13-s + (−0.684 − 0.728i)17-s + (0.278 + 0.960i)19-s + (−0.790 + 0.612i)21-s + (−0.637 + 0.770i)23-s + (−0.750 + 0.661i)27-s + (−0.562 + 0.827i)29-s + (0.728 − 0.684i)31-s + (0.125 + 0.992i)33-s + (0.661 − 0.750i)37-s + (0.998 + 0.0627i)39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (-0.996 - 0.0800i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (-0.996 - 0.0800i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(4000\)    =    \(2^{5} \cdot 5^{3}\)
\( \varepsilon \)  =  $-0.996 - 0.0800i$
motivic weight  =  \(0\)
character  :  $\chi_{4000} (477, \cdot )$
Sato-Tate  :  $\mu(200)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 4000,\ (1:\ ),\ -0.996 - 0.0800i)$
$L(\chi,\frac{1}{2})$  $\approx$  $0.02619656664 - 0.6536600858i$
$L(\frac12,\chi)$  $\approx$  $0.02619656664 - 0.6536600858i$
$L(\chi,1)$  $\approx$  0.8285436915 - 0.2795198270i
$L(1,\chi)$  $\approx$  0.8285436915 - 0.2795198270i

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−18.63485723499303853792753759675, −17.968900452434864843290886523066, −17.239748685174770580586357464169, −16.327834307989300921205032019584, −15.89046421463684308839591799054, −15.288958153632139049800366031659, −14.901178910322044095443437778507, −13.76922025352026277760936423413, −13.229448992524235967117828638717, −12.64307678056752209648805113209, −11.62693347643590237551282535849, −10.9193239069444016028278362293, −10.28344107649781229969971089508, −9.74818744718392462107981667197, −8.8969629746966100321759457164, −8.35407778899063961938584348025, −7.70685390349114567036498632613, −6.44595759248266333843500106791, −5.88921190068599419746014660461, −5.17301474711466648868227945145, −4.375118729622335119979911354628, −3.54876134568256467647120668724, −2.68274426559281416857539281183, −2.444752850431019016692772106974, −0.71568431520099804769459556103, 0.13100553346669797944259345548, 1.00359486153245494693540717822, 2.0395771445492896331689565024, 2.58580807213791990518060809193, 3.60794119990751981636592246944, 4.21451150422700887379981823271, 5.4187772282388830749579739531, 6.08960724485242691831123927579, 6.85905551728959810824373745490, 7.47976391621304600565234080243, 7.9168768075308095461646508175, 9.12239575908175834078355081750, 9.40909062586681709970689035785, 10.4217057152976328228531524622, 11.13474688065682903950102616765, 12.00566636408860659699823412618, 12.54092220967809799340442946894, 13.278624139834425241438167718224, 13.82644851568333370558272795405, 14.24868590841512719900800600816, 15.3488868897793060177750068679, 15.95929793667732934049133507818, 16.66908190031399796488534216875, 17.36030670755793546951740091575, 18.22488623321666764815522037557

Graph of the $Z$-function along the critical line