Properties

Degree 1
Conductor $ 2^{5} \cdot 5^{3} $
Sign $0.989 - 0.145i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.397 − 0.917i)3-s + (0.309 + 0.951i)7-s + (−0.684 − 0.728i)9-s + (−0.278 + 0.960i)11-s + (0.0314 − 0.999i)13-s + (0.844 − 0.535i)17-s + (0.397 + 0.917i)19-s + (0.995 + 0.0941i)21-s + (−0.992 − 0.125i)23-s + (−0.940 + 0.338i)27-s + (0.509 + 0.860i)29-s + (0.535 + 0.844i)31-s + (0.770 + 0.637i)33-s + (0.338 − 0.940i)37-s + (−0.904 − 0.425i)39-s + ⋯
L(s,χ)  = 1  + (0.397 − 0.917i)3-s + (0.309 + 0.951i)7-s + (−0.684 − 0.728i)9-s + (−0.278 + 0.960i)11-s + (0.0314 − 0.999i)13-s + (0.844 − 0.535i)17-s + (0.397 + 0.917i)19-s + (0.995 + 0.0941i)21-s + (−0.992 − 0.125i)23-s + (−0.940 + 0.338i)27-s + (0.509 + 0.860i)29-s + (0.535 + 0.844i)31-s + (0.770 + 0.637i)33-s + (0.338 − 0.940i)37-s + (−0.904 − 0.425i)39-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (0.989 - 0.145i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (0.989 - 0.145i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(4000\)    =    \(2^{5} \cdot 5^{3}\)
\( \varepsilon \)  =  $0.989 - 0.145i$
motivic weight  =  \(0\)
character  :  $\chi_{4000} (1197, \cdot )$
Sato-Tate  :  $\mu(200)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 4000,\ (1:\ ),\ 0.989 - 0.145i)$
$L(\chi,\frac{1}{2})$  $\approx$  $2.577967662 - 0.1886355742i$
$L(\frac12,\chi)$  $\approx$  $2.577967662 - 0.1886355742i$
$L(\chi,1)$  $\approx$  1.219660268 - 0.2075959505i
$L(1,\chi)$  $\approx$  1.219660268 - 0.2075959505i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−18.50802559033410689898495756751, −17.29898775694212392374740104436, −16.950382011074884982570673157607, −16.28109214834509589416922923347, −15.68861526861200238296264034100, −14.92216686921384281535924456790, −14.12347415837111563837668752114, −13.75465827565600128759087241503, −13.19874835690676705117665908096, −11.8144255946008564001249846996, −11.4153980834861232848151339809, −10.68310462978427526390951140862, −9.93126534614635768682160183622, −9.54400172157925717956899928005, −8.38099007216424668298332235634, −8.15042240332691053363846573901, −7.221566066331227875930848448806, −6.24026011001740903322396905880, −5.54110475006223915888464873987, −4.503976801130313604219066849589, −4.181879223368197856294577479589, −3.29212917234653801275831584638, −2.59045438886807862005690156883, −1.47023232127878590082756563325, −0.50386549959242725396012207965, 0.63786913716923762953948627210, 1.5973325764655214469831109913, 2.25967627921854893975039007948, 3.01043130450192159235352645077, 3.76227352706353629368038171495, 5.12310003106833781090649345359, 5.48568903446694323481947542932, 6.36328080233781835822740818764, 7.20598920380798315066132394987, 7.90815980838478266992896720859, 8.31067305667788404065829692629, 9.19091451127749907583533656494, 9.94037251848486711672714187969, 10.64418448601517114225371347498, 11.82968896265051476959147160199, 12.243981388622740271885728914074, 12.58666429069898374555605980952, 13.50923296644602617390407159207, 14.38653543324700924661694916154, 14.62704621626301238809155304900, 15.5873947810306745031675861108, 16.06791127394070545052734653434, 17.22841347373127631010235986494, 17.825079843764820082887986038105, 18.37077152358141473888637411411

Graph of the $Z$-function along the critical line