Properties

Degree 1
Conductor $ 2^{4} \cdot 5^{2} $
Sign $0.695 - 0.718i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.951 − 0.309i)3-s + 7-s + (0.809 + 0.587i)9-s + (−0.587 − 0.809i)11-s + (0.587 − 0.809i)13-s + (0.309 + 0.951i)17-s + (0.951 − 0.309i)19-s + (−0.951 − 0.309i)21-s + (−0.809 + 0.587i)23-s + (−0.587 − 0.809i)27-s + (0.951 + 0.309i)29-s + (−0.309 − 0.951i)31-s + (0.309 + 0.951i)33-s + (−0.587 + 0.809i)37-s + (−0.809 + 0.587i)39-s + ⋯
L(s,χ)  = 1  + (−0.951 − 0.309i)3-s + 7-s + (0.809 + 0.587i)9-s + (−0.587 − 0.809i)11-s + (0.587 − 0.809i)13-s + (0.309 + 0.951i)17-s + (0.951 − 0.309i)19-s + (−0.951 − 0.309i)21-s + (−0.809 + 0.587i)23-s + (−0.587 − 0.809i)27-s + (0.951 + 0.309i)29-s + (−0.309 − 0.951i)31-s + (0.309 + 0.951i)33-s + (−0.587 + 0.809i)37-s + (−0.809 + 0.587i)39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (0.695 - 0.718i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 400 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (0.695 - 0.718i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(400\)    =    \(2^{4} \cdot 5^{2}\)
\( \varepsilon \)  =  $0.695 - 0.718i$
motivic weight  =  \(0\)
character  :  $\chi_{400} (131, \cdot )$
Sato-Tate  :  $\mu(20)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 400,\ (1:\ ),\ 0.695 - 0.718i)$
$L(\chi,\frac{1}{2})$  $\approx$  $1.484544782 - 0.6286235064i$
$L(\frac12,\chi)$  $\approx$  $1.484544782 - 0.6286235064i$
$L(\chi,1)$  $\approx$  0.9520150942 - 0.1629317142i
$L(1,\chi)$  $\approx$  0.9520150942 - 0.1629317142i

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−24.11617034665927044526844680048, −23.31721805871995743944939799266, −22.70787472060658396507561479106, −21.5972986045441987877420794992, −20.93130009314558226023112758489, −20.24052089390008988042615366962, −18.65598899101220283411442778534, −18.06067902716687635834091988421, −17.42684167001369677264836506344, −16.20591446326957832106775439909, −15.782924933730435887181985561033, −14.52320667047705841542037167441, −13.73507564219942745311210767610, −12.28248208584769135997128307774, −11.82009949691596591911231311895, −10.8027263804954591390811456233, −10.03735221833852699132957838478, −8.93529996580419240936814966115, −7.65679652960669967709967863719, −6.80967942947553683199909819395, −5.52187103271616619308938836885, −4.84258386889004069532037555110, −3.86844595436857760600507065405, −2.13131556188233508921749133985, −0.91012094652025977763336119571, 0.689140799389995840357667137240, 1.68946688704260681471446908119, 3.28528879761373380147102381705, 4.68185616196162738299138853769, 5.56127885691560211076644267658, 6.28961735761266750959851549990, 7.80608904525774473804939405119, 8.14606522202646712487737181707, 9.80352405214781604228629050787, 10.86801631896856137724085253192, 11.31091277760664313391539746337, 12.38374215254524875554639432922, 13.29891948749586229643108780062, 14.169676534486515058807310247499, 15.4614253573833669150439524076, 16.13942002331778910229362585392, 17.22652244525161706521529011663, 17.92797193439417924430066526773, 18.52132879294550991084842460191, 19.617000649774907997176916580834, 20.779151581230623931233640365727, 21.53828483677467511648760618979, 22.31475398891781639057707752569, 23.36432755721885177856863744926, 24.0007116161260246389567416315

Graph of the $Z$-function along the critical line