Properties

Degree 1
Conductor $ 7 \cdot 571 $
Sign $-0.989 + 0.146i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.926 + 0.376i)2-s + (0.739 − 0.673i)3-s + (0.716 − 0.697i)4-s + (0.795 − 0.605i)5-s + (−0.431 + 0.901i)6-s + (−0.401 + 0.915i)8-s + (0.0935 − 0.995i)9-s + (−0.509 + 0.860i)10-s + (−0.999 + 0.0110i)11-s + (0.0605 − 0.998i)12-s + (0.709 + 0.705i)13-s + (0.180 − 0.983i)15-s + (0.0275 − 0.999i)16-s + (−0.959 + 0.282i)17-s + (0.287 + 0.957i)18-s + (−0.202 + 0.979i)19-s + ⋯
L(s,χ)  = 1  + (−0.926 + 0.376i)2-s + (0.739 − 0.673i)3-s + (0.716 − 0.697i)4-s + (0.795 − 0.605i)5-s + (−0.431 + 0.901i)6-s + (−0.401 + 0.915i)8-s + (0.0935 − 0.995i)9-s + (−0.509 + 0.860i)10-s + (−0.999 + 0.0110i)11-s + (0.0605 − 0.998i)12-s + (0.709 + 0.705i)13-s + (0.180 − 0.983i)15-s + (0.0275 − 0.999i)16-s + (−0.959 + 0.282i)17-s + (0.287 + 0.957i)18-s + (−0.202 + 0.979i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 3997 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (-0.989 + 0.146i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 3997 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (-0.989 + 0.146i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(3997\)    =    \(7 \cdot 571\)
\( \varepsilon \)  =  $-0.989 + 0.146i$
motivic weight  =  \(0\)
character  :  $\chi_{3997} (615, \cdot )$
Sato-Tate  :  $\mu(570)$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((1,\ 3997,\ (1:\ ),\ -0.989 + 0.146i)\)
\(L(\chi,\frac{1}{2})\)  \(\approx\)  \(-0.04829084445 - 0.6571473464i\)
\(L(\frac12,\chi)\)  \(\approx\)  \(-0.04829084445 - 0.6571473464i\)
\(L(\chi,1)\)  \(\approx\)  \(0.8821408931 - 0.2127163660i\)
\(L(1,\chi)\)  \(\approx\)  \(0.8821408931 - 0.2127163660i\)

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−18.48423019961471086298104310525, −18.19733380611048481378370882073, −17.44172178832278438547391471703, −16.71094637697283848914309014990, −15.90114577180134518411008584262, −15.32385588457054545714770229471, −14.904899495839269936435025408, −13.70080663597756681643072154580, −13.269321180387750758142308860167, −12.70358309928942750768586301305, −11.22958869862078263043294088760, −10.86237537423627390284184212546, −10.46799213504774749221930720923, −9.51771193605711703829609715822, −9.18768074267884673403109408308, −8.34994355098780362064468593947, −7.73614891002493443600496766230, −6.91355364400731619117265784298, −6.14380306899490687522593052570, −5.142396394881619366940302987, −4.28434343730313418509466534527, −3.10589478835067671130703550318, −2.79060516948640706861640367367, −2.16373616710538424088523653183, −1.09615268554394613569427970442, 0.11397682772077103856941899197, 1.094707234583433934549230408500, 1.84965619314646395271944663144, 2.28551047911285771984105604143, 3.319620340223141885036416897845, 4.49397317866828037360807915228, 5.47916666735042877807198419427, 6.22838837665857268534634702145, 6.687324189619369139520526605940, 7.74152604990621098428041605497, 8.15152801768377058790418347285, 8.93799563947094107510314963411, 9.35981202490167828585753903155, 10.09296885032538051153769265664, 10.93207452157433861016008648663, 11.68825700966614401016642015155, 12.66530148604529963746767835652, 13.32993595870056623251689559265, 13.72813722991827522922954808588, 14.716754577804401587996070772108, 15.20583625075784475943348815944, 16.069165694823139068318032904614, 16.69062176382396981687484144778, 17.395358798471200564945822985634, 18.10054603682583908094682338555

Graph of the $Z$-function along the critical line