# Properties

 Degree 1 Conductor 37 Sign $0.308 - 0.951i$ Motivic weight 0 Primitive yes Self-dual no Analytic rank 0

# Learn more about

## Dirichlet series

 L(χ,s)  = 1 + (−0.939 − 0.342i)2-s + (−0.939 + 0.342i)3-s + (0.766 + 0.642i)4-s + (0.173 − 0.984i)5-s + 6-s + (0.173 − 0.984i)7-s + (−0.5 − 0.866i)8-s + (0.766 − 0.642i)9-s + (−0.5 + 0.866i)10-s + (−0.5 − 0.866i)11-s + (−0.939 − 0.342i)12-s + (0.766 + 0.642i)13-s + (−0.5 + 0.866i)14-s + (0.173 + 0.984i)15-s + (0.173 + 0.984i)16-s + (0.766 − 0.642i)17-s + ⋯
 L(s,χ)  = 1 + (−0.939 − 0.342i)2-s + (−0.939 + 0.342i)3-s + (0.766 + 0.642i)4-s + (0.173 − 0.984i)5-s + 6-s + (0.173 − 0.984i)7-s + (−0.5 − 0.866i)8-s + (0.766 − 0.642i)9-s + (−0.5 + 0.866i)10-s + (−0.5 − 0.866i)11-s + (−0.939 − 0.342i)12-s + (0.766 + 0.642i)13-s + (−0.5 + 0.866i)14-s + (0.173 + 0.984i)15-s + (0.173 + 0.984i)16-s + (0.766 − 0.642i)17-s + ⋯

## Functional equation

\begin{aligned} \Lambda(\chi,s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.308 - 0.951i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\n
\begin{aligned} \Lambda(s,\chi)=\mathstrut & 37 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.308 - 0.951i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\n

## Invariants

 $$d$$ = $$1$$ $$N$$ = $$37$$ $$\varepsilon$$ = $0.308 - 0.951i$ motivic weight = $$0$$ character : $\chi_{37} (33, \cdot )$ Sato-Tate : $\mu(9)$ primitive : yes self-dual : no analytic rank = 0 Selberg data = $(1,\ 37,\ (0:\ ),\ 0.308 - 0.951i)$ $L(\chi,\frac{1}{2})$ $\approx$ $0.3387689976 - 0.2463383707i$ $L(\frac12,\chi)$ $\approx$ $0.3387689976 - 0.2463383707i$ $L(\chi,1)$ $\approx$ 0.5141135679 - 0.1890252611i $L(1,\chi)$ $\approx$ 0.5141135679 - 0.1890252611i

## Euler product

\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}
\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}

## Imaginary part of the first few zeros on the critical line

−35.5908434801810988213770576543, −34.48464826512778759308484506444, −34.085200455595879000421782554704, −32.81047192013317073968927420897, −30.63457114835901680782399670290, −29.66897908557935071753221542111, −28.27627158125074995379056915446, −27.76651440284003970988088648420, −26.057842203623865231350734315714, −25.16528623931479587676886814123, −23.72081432421016735845086913540, −22.600915360103759940431336488499, −21.10955477505210088732818220551, −19.09195681799801524974163430816, −18.24601397087965543223215313148, −17.49134801425802534891942423009, −15.84988659186725624705732229180, −14.8019834745334814965051567656, −12.51272272056808278721842915668, −11.045658761844004527984171109582, −10.11578384186285172454652874287, −8.11615554756115148830681122744, −6.65682600505255515202025980711, −5.58565877500320855220537128698, −2.16828332359103987012630255802, 1.066304661875605489943296197327, 4.08693912453885005046630802124, 6.04335502022936829237954956842, 7.889672769997696131266974599839, 9.4834900758039433466025178343, 10.73387647780722427993386688733, 11.85204881748222339407736477112, 13.3611792889233864929033344085, 16.00880985175202842300528627355, 16.662256572756819511352614686177, 17.663289239140107375950063270300, 19.10922210113540284288694781904, 20.803180065205761685583900115294, 21.27746505023538404053698380273, 23.31253900040740223194064362602, 24.35503559927700417729462166358, 26.03400678622807338094633865136, 27.2363455694531834197012671416, 28.10120443336542996952337605100, 29.17669371075645523393012330836, 29.94856402991601843407874976128, 31.963849351652988132695554601335, 33.37311616375265696587040745674, 34.19940628961324891287922706823, 35.6887437987906309473449624788