Properties

Degree 1
Conductor 37
Sign $0.849 + 0.527i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.342 + 0.939i)2-s + (0.939 − 0.342i)3-s + (−0.766 − 0.642i)4-s + (0.984 + 0.173i)5-s + i·6-s + (0.173 − 0.984i)7-s + (0.866 − 0.5i)8-s + (0.766 − 0.642i)9-s + (−0.5 + 0.866i)10-s + (0.5 + 0.866i)11-s + (−0.939 − 0.342i)12-s + (−0.642 + 0.766i)13-s + (0.866 + 0.5i)14-s + (0.984 − 0.173i)15-s + (0.173 + 0.984i)16-s + (0.642 + 0.766i)17-s + ⋯
L(s,χ)  = 1  + (−0.342 + 0.939i)2-s + (0.939 − 0.342i)3-s + (−0.766 − 0.642i)4-s + (0.984 + 0.173i)5-s + i·6-s + (0.173 − 0.984i)7-s + (0.866 − 0.5i)8-s + (0.766 − 0.642i)9-s + (−0.5 + 0.866i)10-s + (0.5 + 0.866i)11-s + (−0.939 − 0.342i)12-s + (−0.642 + 0.766i)13-s + (0.866 + 0.5i)14-s + (0.984 − 0.173i)15-s + (0.173 + 0.984i)16-s + (0.642 + 0.766i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 37 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (0.849 + 0.527i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 37 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (0.849 + 0.527i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(37\)
\( \varepsilon \)  =  $0.849 + 0.527i$
motivic weight  =  \(0\)
character  :  $\chi_{37} (13, \cdot )$
Sato-Tate  :  $\mu(36)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 37,\ (1:\ ),\ 0.849 + 0.527i)$
$L(\chi,\frac{1}{2})$  $\approx$  $1.714553287 + 0.4889529956i$
$L(\frac12,\chi)$  $\approx$  $1.714553287 + 0.4889529956i$
$L(\chi,1)$  $\approx$  1.300246394 + 0.3269880849i
$L(1,\chi)$  $\approx$  1.300246394 + 0.3269880849i

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−35.65032971183591404227213235528, −34.056216121599236354662937231176, −32.19870522178916453724158234059, −31.7956751048291140967583986692, −30.229214279886677878494319982772, −29.36471755361819958419158058555, −27.88319968943100163552548930556, −26.98277429517919277521349493696, −25.53080980224011905637520309311, −24.77904073946470006018233002878, −22.215615697935760257108957604209, −21.46263588535209861066959621368, −20.49255233546053405250904959000, −19.16116341073974473193609768407, −18.1042257980689792855746520831, −16.53748812679050596166695449553, −14.59257345897278925119498398827, −13.49052825540705168042954656479, −12.098315441073938870765177762884, −10.2243066475164263214223686914, −9.25506190374578986875686392159, −8.1468873812909096439604343745, −5.32187610786013010255552184978, −3.25184704634315763579367558983, −1.89439727727827322673548076310, 1.69684863635768874722362987259, 4.352087952266413710038020469587, 6.52463798382945093665615715477, 7.55637476448840683811498847178, 9.202379299026394602511233164183, 10.155627766402356937399393510231, 12.99526678878067858682872945832, 14.15559930971820202116924778773, 14.84200070843563520275953355375, 16.82129621052041790322512918256, 17.7540950669854945603205336337, 19.1247861552966700373168783628, 20.367464425202374521032042040350, 22.00340840838448803907929524395, 23.68960146411522367265449549110, 24.63420108569863615530313606870, 25.942761790289076974691017621418, 26.29124555671612959509602557596, 27.91978332901180730660063223355, 29.58787380744392077567555787156, 30.68861621783860156842864679504, 32.245420880207470150719237859736, 33.00851632768363959313807596241, 34.07959662089613002437938300285, 35.70990568920022313900163533121

Graph of the $Z$-function along the critical line