Properties

Degree 1
Conductor 367
Sign $0.965 + 0.261i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.935 − 0.352i)2-s + (0.0257 + 0.999i)3-s + (0.751 + 0.660i)4-s + (−0.988 + 0.153i)5-s + (0.328 − 0.944i)6-s + (−0.640 − 0.767i)7-s + (−0.469 − 0.882i)8-s + (−0.998 + 0.0514i)9-s + (0.978 + 0.204i)10-s + (0.916 − 0.400i)11-s + (−0.640 + 0.767i)12-s + (−0.998 + 0.0514i)13-s + (0.328 + 0.944i)14-s + (−0.179 − 0.983i)15-s + (0.128 + 0.991i)16-s + (0.600 + 0.799i)17-s + ⋯
L(s,χ)  = 1  + (−0.935 − 0.352i)2-s + (0.0257 + 0.999i)3-s + (0.751 + 0.660i)4-s + (−0.988 + 0.153i)5-s + (0.328 − 0.944i)6-s + (−0.640 − 0.767i)7-s + (−0.469 − 0.882i)8-s + (−0.998 + 0.0514i)9-s + (0.978 + 0.204i)10-s + (0.916 − 0.400i)11-s + (−0.640 + 0.767i)12-s + (−0.998 + 0.0514i)13-s + (0.328 + 0.944i)14-s + (−0.179 − 0.983i)15-s + (0.128 + 0.991i)16-s + (0.600 + 0.799i)17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 367 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.965 + 0.261i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 367 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.965 + 0.261i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(367\)
\( \varepsilon \)  =  $0.965 + 0.261i$
motivic weight  =  \(0\)
character  :  $\chi_{367} (72, \cdot )$
Sato-Tate  :  $\mu(61)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 367,\ (0:\ ),\ 0.965 + 0.261i)$
$L(\chi,\frac{1}{2})$  $\approx$  $0.5823251619 + 0.07756243126i$
$L(\frac12,\chi)$  $\approx$  $0.5823251619 + 0.07756243126i$
$L(\chi,1)$  $\approx$  0.5780778623 + 0.06150474885i
$L(1,\chi)$  $\approx$  0.5780778623 + 0.06150474885i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−24.72299203167441176914103542889, −24.12844448772793357892296626541, −22.98482801676067176337299297816, −22.43013429921686320614724140166, −20.64066700842712119978650970655, −19.79163135309387070550442062411, −19.21127764724840382964484717311, −18.64856473084530520977134171558, −17.619477628829973449600473057010, −16.75843712585971586283268795124, −15.883236176088561703613195373373, −14.93285586165998374723786530974, −14.12378082892506947268545484024, −12.46579781277225587018726941309, −12.02026425059396808147220766731, −11.233708048443469133748393020688, −9.543144974801445896477233683251, −9.08924874524880112539770107294, −7.59479956412055613929660154036, −7.492295058691774029981181418280, −6.24718759494363459788733989614, −5.26356742016575305389810310254, −3.341562753377549065088387040104, −2.190434038900849967375007758975, −0.807526749790573200629034714482, 0.755208563808640460415694823769, 2.85849269325969198919134731620, 3.61685467469220487884756981024, 4.50487199284361244350001837411, 6.3032596528356666664462802172, 7.32459070282831030193862244437, 8.28324836444558998883088463580, 9.312616912736477516094018832845, 10.06111031326403614851877586465, 10.93504974698451836178925509587, 11.70402267914388890746660508655, 12.62337528457546674634335900482, 14.23485068319649101810134907400, 15.13587376396563953006049852490, 16.08498817905553306857661943917, 16.736440762434630693919325687357, 17.3141916516995964218775143862, 18.84546468682625838825862070310, 19.64672232865181211358907953931, 19.9877635455000818097625085730, 20.98815027575759884342113318401, 22.141713253442007999667384166759, 22.58266962254339047505232048192, 23.88628484241007105303327305435, 24.89553441768206369300956161437

Graph of the $Z$-function along the critical line