Properties

Degree 1
Conductor $ 2^{2} \cdot 3^{2} $
Sign $0.173 - 0.984i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.5 − 0.866i)5-s + (0.5 − 0.866i)7-s + (0.5 − 0.866i)11-s + (−0.5 − 0.866i)13-s + 17-s − 19-s + (0.5 + 0.866i)23-s + (−0.5 + 0.866i)25-s + (−0.5 + 0.866i)29-s + (0.5 + 0.866i)31-s − 35-s + 37-s + (−0.5 − 0.866i)41-s + (0.5 − 0.866i)43-s + (0.5 − 0.866i)47-s + ⋯
L(s,χ)  = 1  + (−0.5 − 0.866i)5-s + (0.5 − 0.866i)7-s + (0.5 − 0.866i)11-s + (−0.5 − 0.866i)13-s + 17-s − 19-s + (0.5 + 0.866i)23-s + (−0.5 + 0.866i)25-s + (−0.5 + 0.866i)29-s + (0.5 + 0.866i)31-s − 35-s + 37-s + (−0.5 − 0.866i)41-s + (0.5 − 0.866i)43-s + (0.5 − 0.866i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 36 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (0.173 - 0.984i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 36 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (0.173 - 0.984i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(36\)    =    \(2^{2} \cdot 3^{2}\)
\( \varepsilon \)  =  $0.173 - 0.984i$
motivic weight  =  \(0\)
character  :  $\chi_{36} (31, \cdot )$
Sato-Tate  :  $\mu(6)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 36,\ (1:\ ),\ 0.173 - 0.984i)$
$L(\chi,\frac{1}{2})$  $\approx$  $0.9884724919 - 0.8294269034i$
$L(\frac12,\chi)$  $\approx$  $0.9884724919 - 0.8294269034i$
$L(\chi,1)$  $\approx$  0.9840438113 - 0.3581626565i
$L(1,\chi)$  $\approx$  0.9840438113 - 0.3581626565i

Euler product

\[\begin{aligned}L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]
\[\begin{aligned}L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−35.65226917655706862275677463829, −34.38928170962187333286368319253, −33.72331345055919738890270307697, −31.974198935909409857618717886190, −30.90301731600950543144615679691, −29.9938104202461392898022778521, −28.33729745537479217726661183375, −27.34091390948471093109871095642, −26.04910307973596078760794988895, −24.827933827863368781211750821983, −23.38844143605730591265431483799, −22.24648206434101954039202024277, −21.03484422373811868900002898182, −19.32709737023475442080979923945, −18.43431621211412759036140745844, −16.93523973838671676594902327875, −15.14478864997353383792979024847, −14.48929246529189450685183375899, −12.35293697747913674603033103728, −11.29129554297552549381223229676, −9.61675299237772893847340912350, −7.90065445055288681844313381827, −6.4139388605395573100182027213, −4.395295916916735711983073054247, −2.36426765473592387475291733061, 0.93468572592624077763867749013, 3.74336585507794542185841000015, 5.32211014726077417771585399000, 7.46800994748448765693902597055, 8.72015991681402708810778978218, 10.54161693101067141682348472702, 11.991537439616035563313976849359, 13.38189167703740512806278827453, 14.85572121580761028053359824380, 16.46973826104502616682870882267, 17.34101325848358594101711625590, 19.23557391886182381803113946995, 20.26391341587413822319702352139, 21.459884940569361026427098634069, 23.19345118088844736555863741349, 24.09834201912689038847003266004, 25.31918922348646883417840897898, 27.12182721510882414006301090239, 27.637013665948661233708244495625, 29.33647098122860963978225052425, 30.31522251705824494748280115738, 31.87449655674035908979917366793, 32.603681757899809588003641453142, 34.106456299610876433114563561036, 35.29597037808016904534306015595

Graph of the $Z$-function along the critical line