Dirichlet series
L(χ,s) = 1 | + (−0.619 − 0.785i)2-s + (−0.0901 − 0.995i)3-s + (−0.232 + 0.972i)4-s + (0.750 + 0.661i)5-s + (−0.725 + 0.687i)6-s + (0.700 + 0.713i)7-s + (0.907 − 0.419i)8-s + (−0.983 + 0.179i)9-s + (0.0541 − 0.998i)10-s + (−0.994 − 0.108i)11-s + (0.989 + 0.143i)12-s + (−0.922 + 0.386i)13-s + (0.126 − 0.992i)14-s + (0.590 − 0.806i)15-s + (−0.891 − 0.452i)16-s + (0.907 + 0.419i)17-s + ⋯ |
L(s,χ) = 1 | + (−0.619 − 0.785i)2-s + (−0.0901 − 0.995i)3-s + (−0.232 + 0.972i)4-s + (0.750 + 0.661i)5-s + (−0.725 + 0.687i)6-s + (0.700 + 0.713i)7-s + (0.907 − 0.419i)8-s + (−0.983 + 0.179i)9-s + (0.0541 − 0.998i)10-s + (−0.994 − 0.108i)11-s + (0.989 + 0.143i)12-s + (−0.922 + 0.386i)13-s + (0.126 − 0.992i)14-s + (0.590 − 0.806i)15-s + (−0.891 − 0.452i)16-s + (0.907 + 0.419i)17-s + ⋯ |
Functional equation
\[\begin{aligned}
\Lambda(\chi,s)=\mathstrut & 349 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr
=\mathstrut & (0.983 - 0.179i)\, \Lambda(\overline{\chi},1-s)
\end{aligned}
\]
\[\begin{aligned}
\Lambda(s,\chi)=\mathstrut & 349 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr
=\mathstrut & (0.983 - 0.179i)\, \Lambda(1-s,\overline{\chi})
\end{aligned}
\]
Invariants
\( d \) | = | \(1\) |
\( N \) | = | \(349\) |
\( \varepsilon \) | = | $0.983 - 0.179i$ |
motivic weight | = | \(0\) |
character | : | $\chi_{349} (85, \cdot )$ |
Sato-Tate | : | $\mu(87)$ |
primitive | : | yes |
self-dual | : | no |
analytic rank | = | 0 |
Selberg data | = | $(1,\ 349,\ (0:\ ),\ 0.983 - 0.179i)$ |
$L(\chi,\frac{1}{2})$ | $\approx$ | $0.9207140565 - 0.08334892977i$ |
$L(\frac12,\chi)$ | $\approx$ | $0.9207140565 - 0.08334892977i$ |
$L(\chi,1)$ | $\approx$ | 0.8033886430 - 0.2265058849i |
$L(1,\chi)$ | $\approx$ | 0.8033886430 - 0.2265058849i |
Euler product
\[\begin{aligned}
L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1}
\end{aligned}\]
\[\begin{aligned}
L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1}
\end{aligned}\]