Properties

Degree 1
Conductor 349
Sign $-0.122 - 0.992i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.968 + 0.250i)2-s + (0.958 − 0.284i)3-s + (0.874 − 0.484i)4-s + (−0.674 + 0.738i)5-s + (−0.856 + 0.515i)6-s + (0.336 − 0.941i)7-s + (−0.725 + 0.687i)8-s + (0.837 − 0.546i)9-s + (0.468 − 0.883i)10-s + (−0.561 − 0.827i)11-s + (0.700 − 0.713i)12-s + (−0.817 − 0.576i)13-s + (−0.0901 + 0.995i)14-s + (−0.436 + 0.899i)15-s + (0.530 − 0.847i)16-s + (−0.725 − 0.687i)17-s + ⋯
L(s,χ)  = 1  + (−0.968 + 0.250i)2-s + (0.958 − 0.284i)3-s + (0.874 − 0.484i)4-s + (−0.674 + 0.738i)5-s + (−0.856 + 0.515i)6-s + (0.336 − 0.941i)7-s + (−0.725 + 0.687i)8-s + (0.837 − 0.546i)9-s + (0.468 − 0.883i)10-s + (−0.561 − 0.827i)11-s + (0.700 − 0.713i)12-s + (−0.817 − 0.576i)13-s + (−0.0901 + 0.995i)14-s + (−0.436 + 0.899i)15-s + (0.530 − 0.847i)16-s + (−0.725 − 0.687i)17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 349 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (-0.122 - 0.992i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 349 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (-0.122 - 0.992i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(349\)
\( \varepsilon \)  =  $-0.122 - 0.992i$
motivic weight  =  \(0\)
character  :  $\chi_{349} (147, \cdot )$
Sato-Tate  :  $\mu(87)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 349,\ (0:\ ),\ -0.122 - 0.992i)$
$L(\chi,\frac{1}{2})$  $\approx$  $0.4890377517 - 0.5530573633i$
$L(\frac12,\chi)$  $\approx$  $0.4890377517 - 0.5530573633i$
$L(\chi,1)$  $\approx$  0.7361274663 - 0.1751318106i
$L(1,\chi)$  $\approx$  0.7361274663 - 0.1751318106i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−25.2935154114210969553837507937, −24.41241098909466997407399625419, −23.77128915217333121642206083277, −21.92959653124392078335758795777, −21.29440427915157452554974210390, −20.497832689641368142015177196670, −19.56354427924738491796616148576, −19.25382564219646278554928315894, −18.049303819219087250457755855063, −17.16859930262559717629764873788, −15.91393774651422557510672118581, −15.462927143007207301589683155265, −14.658473550644188653377734418578, −12.98360757240082084014754014609, −12.328194739277680632238856937737, −11.34627531948458865170386524242, −10.09286666326718047180172000313, −9.27129166878799422165267312873, −8.43867264717229282797156900640, −7.910920662103667171201368519185, −6.76272794577535493536594207856, −4.95109903615996682014295198953, −3.96966930697178096792171443198, −2.47571040520696357613247150841, −1.829089823979637771042958055706, 0.520840891989253822458716070865, 2.230618058667638153460916521282, 3.09852371497946222262662232894, 4.42257007042087478255578311347, 6.28117411593813616186871190993, 7.24641881097589728631923206996, 7.879439844547796507363214007251, 8.55090851826305761801799275070, 9.92816147518922796226981489450, 10.60919838363503145979706502293, 11.53395720342868947549694298824, 12.87260294510149710638922245665, 14.14923764830265554938374608372, 14.711761763874937631880255288887, 15.6544037593840040322530214697, 16.49657138590253975860114912534, 17.76213648223368354748586416716, 18.445179850069275770455460441446, 19.28833359733310457312510911813, 19.97824219565789577736133403939, 20.588086150713801407012686482261, 21.79008209914867078100397480762, 23.218763273956495800589664463117, 24.00487622616311688796491472891, 24.63894185231216237458382828957

Graph of the $Z$-function along the critical line