Properties

Degree 1
Conductor 349
Sign $0.318 + 0.948i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.891 + 0.452i)2-s + (0.935 + 0.353i)3-s + (0.590 − 0.806i)4-s + (−0.968 − 0.250i)5-s + (−0.994 + 0.108i)6-s + (−0.999 + 0.0361i)7-s + (−0.161 + 0.986i)8-s + (0.750 + 0.661i)9-s + (0.976 − 0.214i)10-s + (0.907 − 0.419i)11-s + (0.837 − 0.546i)12-s + (−0.0180 + 0.999i)13-s + (0.874 − 0.484i)14-s + (−0.817 − 0.576i)15-s + (−0.302 − 0.953i)16-s + (−0.161 − 0.986i)17-s + ⋯
L(s,χ)  = 1  + (−0.891 + 0.452i)2-s + (0.935 + 0.353i)3-s + (0.590 − 0.806i)4-s + (−0.968 − 0.250i)5-s + (−0.994 + 0.108i)6-s + (−0.999 + 0.0361i)7-s + (−0.161 + 0.986i)8-s + (0.750 + 0.661i)9-s + (0.976 − 0.214i)10-s + (0.907 − 0.419i)11-s + (0.837 − 0.546i)12-s + (−0.0180 + 0.999i)13-s + (0.874 − 0.484i)14-s + (−0.817 − 0.576i)15-s + (−0.302 − 0.953i)16-s + (−0.161 − 0.986i)17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 349 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.318 + 0.948i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 349 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.318 + 0.948i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(349\)
\( \varepsilon \)  =  $0.318 + 0.948i$
motivic weight  =  \(0\)
character  :  $\chi_{349} (116, \cdot )$
Sato-Tate  :  $\mu(87)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 349,\ (0:\ ),\ 0.318 + 0.948i)$
$L(\chi,\frac{1}{2})$  $\approx$  $0.7404921708 + 0.5325382673i$
$L(\frac12,\chi)$  $\approx$  $0.7404921708 + 0.5325382673i$
$L(\chi,1)$  $\approx$  0.7744951065 + 0.2735363169i
$L(1,\chi)$  $\approx$  0.7744951065 + 0.2735363169i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−24.96924492380093697461869955552, −24.06372772291422625514505706689, −22.68528039568225407261512866661, −22.073725648116904872167454078651, −20.468211290170886607437107630338, −20.16801845073442899345839541165, −19.27086644187730137435618422734, −18.86340438054275891765708080096, −17.77921371479088361837861941395, −16.686723534937139332741196181579, −15.59948905174891513034061581549, −15.090383265417041473244877882613, −13.70861677456091856347083494567, −12.38337088445178550677440231884, −12.2669477592735049877125415827, −10.689172437215092416045136387578, −9.86785254813649915823241787553, −8.88428252665898103988261454253, −8.06591274581888802020391621898, −7.20191094574269001576826379653, −6.4026148662366086308621577531, −3.96084333876213370657139477307, −3.407294106530383938974819954770, −2.33670911546732574643497701692, −0.80255043491645684081822056352, 1.22737469056727396184158256956, 2.86522384010745854845814083087, 3.82327100335898272018601453412, 5.15396533382025095748362418929, 6.828152547623630823315037238854, 7.29094782673448851242145251377, 8.61007548573916644071464738543, 9.14966870348178143735673377539, 9.883204603264881580405330484049, 11.233045166499916146811681627078, 12.05089386823257964602390758714, 13.5976093155238620385327428193, 14.38182043258172509621394583837, 15.43615055761141275261544986868, 16.249449397492959137788545390380, 16.43923578064224589399675725844, 18.08321143105084711117899228141, 19.08878265874978947198238613680, 19.66258709937104848220461692950, 20.04473605027057452466623223238, 21.29722044717590514970064158578, 22.4353359727185534825074197685, 23.51087114640428569545773568505, 24.45050336087768870801331887511, 25.128055754751630610470317049229

Graph of the $Z$-function along the critical line