Properties

Label 1-332-332.331-r0-0-0
Degree $1$
Conductor $332$
Sign $1$
Analytic cond. $1.54180$
Root an. cond. $1.54180$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 7-s + 9-s − 11-s − 13-s + 15-s + 17-s + 19-s + 21-s − 23-s + 25-s − 27-s + 29-s − 31-s + 33-s + 35-s + 37-s + 39-s + 41-s + 43-s − 45-s + 47-s + 49-s − 51-s − 53-s + 55-s + ⋯
L(s)  = 1  − 3-s − 5-s − 7-s + 9-s − 11-s − 13-s + 15-s + 17-s + 19-s + 21-s − 23-s + 25-s − 27-s + 29-s − 31-s + 33-s + 35-s + 37-s + 39-s + 41-s + 43-s − 45-s + 47-s + 49-s − 51-s − 53-s + 55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 332 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 332 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(332\)    =    \(2^{2} \cdot 83\)
Sign: $1$
Analytic conductor: \(1.54180\)
Root analytic conductor: \(1.54180\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{332} (331, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 332,\ (0:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.5026107595\)
\(L(\frac12)\) \(\approx\) \(0.5026107595\)
\(L(1)\) \(\approx\) \(0.5597789832\)
\(L(1)\) \(\approx\) \(0.5597789832\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
83 \( 1 \)
good3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 - T \)
13 \( 1 - T \)
17 \( 1 + T \)
19 \( 1 + T \)
23 \( 1 - T \)
29 \( 1 + T \)
31 \( 1 - T \)
37 \( 1 + T \)
41 \( 1 + T \)
43 \( 1 + T \)
47 \( 1 + T \)
53 \( 1 - T \)
59 \( 1 - T \)
61 \( 1 + T \)
67 \( 1 + T \)
71 \( 1 + T \)
73 \( 1 - T \)
79 \( 1 + T \)
89 \( 1 - T \)
97 \( 1 - T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−24.83254816363774151765423875422, −23.781920676827283311362797110193, −23.33553398288746065968708883780, −22.43004588714711604641464447784, −21.79384372216510298346008737775, −20.51103488249294423365963246552, −19.53623273815445797171382400396, −18.73953552027787235234382124769, −17.92977663703181421579991686042, −16.67744282880487592404058814852, −16.071466519828879266809626342530, −15.46919406680024012346160871457, −14.1236377871988387992872032401, −12.62283739373281771556403293861, −12.38461542223362586866311152303, −11.29829501702516948747932271110, −10.27463009006876752520343022912, −9.53564479602287805090211332643, −7.8005564604420591172376017711, −7.268189094752791452220528135379, −5.994341151584676918132507561827, −5.060751843099240661420427086181, −3.926285786246927379078935982077, −2.739296607122986250007097771382, −0.66276616693936006583367575935, 0.66276616693936006583367575935, 2.739296607122986250007097771382, 3.926285786246927379078935982077, 5.060751843099240661420427086181, 5.994341151584676918132507561827, 7.268189094752791452220528135379, 7.8005564604420591172376017711, 9.53564479602287805090211332643, 10.27463009006876752520343022912, 11.29829501702516948747932271110, 12.38461542223362586866311152303, 12.62283739373281771556403293861, 14.1236377871988387992872032401, 15.46919406680024012346160871457, 16.071466519828879266809626342530, 16.67744282880487592404058814852, 17.92977663703181421579991686042, 18.73953552027787235234382124769, 19.53623273815445797171382400396, 20.51103488249294423365963246552, 21.79384372216510298346008737775, 22.43004588714711604641464447784, 23.33553398288746065968708883780, 23.781920676827283311362797110193, 24.83254816363774151765423875422

Graph of the $Z$-function along the critical line