Properties

Degree 1
Conductor 311
Sign $0.111 + 0.993i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.528 − 0.848i)2-s + (0.528 + 0.848i)3-s + (−0.440 − 0.897i)4-s + (−0.250 + 0.968i)5-s + 6-s + (0.918 + 0.394i)7-s + (−0.994 − 0.101i)8-s + (−0.440 + 0.897i)9-s + (0.688 + 0.724i)10-s + (0.874 − 0.485i)11-s + (0.528 − 0.848i)12-s + (−0.440 + 0.897i)13-s + (0.820 − 0.571i)14-s + (−0.954 + 0.299i)15-s + (−0.612 + 0.790i)16-s + (−0.688 − 0.724i)17-s + ⋯
L(s,χ)  = 1  + (0.528 − 0.848i)2-s + (0.528 + 0.848i)3-s + (−0.440 − 0.897i)4-s + (−0.250 + 0.968i)5-s + 6-s + (0.918 + 0.394i)7-s + (−0.994 − 0.101i)8-s + (−0.440 + 0.897i)9-s + (0.688 + 0.724i)10-s + (0.874 − 0.485i)11-s + (0.528 − 0.848i)12-s + (−0.440 + 0.897i)13-s + (0.820 − 0.571i)14-s + (−0.954 + 0.299i)15-s + (−0.612 + 0.790i)16-s + (−0.688 − 0.724i)17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(\chi,s)=\mathstrut & 311 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (0.111 + 0.993i)\, \Lambda(\overline{\chi},1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s,\chi)=\mathstrut & 311 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (0.111 + 0.993i)\, \Lambda(1-s,\overline{\chi}) \end{aligned} \]

Invariants

\( d \)  =  \(1\)
\( N \)  =  \(311\)
\( \varepsilon \)  =  $0.111 + 0.993i$
motivic weight  =  \(0\)
character  :  $\chi_{311} (293, \cdot )$
Sato-Tate  :  $\mu(62)$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(1,\ 311,\ (1:\ ),\ 0.111 + 0.993i)$
$L(\chi,\frac{1}{2})$  $\approx$  $1.814562222 + 1.623139459i$
$L(\frac12,\chi)$  $\approx$  $1.814562222 + 1.623139459i$
$L(\chi,1)$  $\approx$  1.502378721 + 0.2159610677i
$L(1,\chi)$  $\approx$  1.502378721 + 0.2159610677i

Euler product

\[\begin{aligned} L(\chi,s) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]
\[\begin{aligned} L(s,\chi) = \prod_p (1- \chi(p) p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−24.472444408227248934936348403790, −24.29519274708312144382729785967, −23.36515926913476395901631157124, −22.39453614646495373592358439498, −21.17160423249795399273272848032, −20.25419229714586555111807275272, −19.69793857292719543414407852979, −18.16544942010678457537897130364, −17.33290307628592189676759524128, −16.928115936374096531483014510314, −15.29875922000161327714792938790, −14.8675813840692841741190122107, −13.76100150141371810244325826127, −12.96053158885630516415455363672, −12.304695672605606785476322876493, −11.25084663623300576664944726847, −9.19856254515774479253881300932, −8.610112264643099446530227437252, −7.59755580445603947319384520918, −6.99264021207980083041530901547, −5.57917818983803271255739611758, −4.60218467496045686789290768238, −3.573186446434399476930019761898, −1.9342403308134976722641325412, −0.54511246795789153135133307230, 1.73336100787848026469550272276, 2.77250880787584977947531650885, 3.7750583501833145124741732070, 4.63224084679118904730808104072, 5.76624136980669560326355283894, 7.19313108823771141510111380046, 8.693188663252170253026021985, 9.41962506441641744163984076888, 10.5456203296515843124003078714, 11.36425807538214775193851506413, 11.86414593301300296351256889855, 13.60816606668047272623613764522, 14.398429272013038598464271539081, 14.75522616898718508412601608154, 15.76108490859953025264680366534, 17.10774146113113773966643016353, 18.44398741619295923283326639075, 19.08104794619720501192801560245, 19.97023013925481353186495003855, 20.919617202802256176086907993297, 21.6596895065324617038145927992, 22.25165280537161460769717612554, 23.06331822133797913401918650611, 24.333993058932923970298844621702, 25.084659767122532365672221808756

Graph of the $Z$-function along the critical line