Properties

Degree $1$
Conductor $311$
Sign $0.943 + 0.330i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (0.688 + 0.724i)2-s + (0.688 − 0.724i)3-s + (−0.0506 + 0.998i)4-s + (0.979 − 0.201i)5-s + 6-s + (−0.954 − 0.299i)7-s + (−0.758 + 0.651i)8-s + (−0.0506 − 0.998i)9-s + (0.820 + 0.571i)10-s + (0.918 + 0.394i)11-s + (0.688 + 0.724i)12-s + (−0.0506 − 0.998i)13-s + (−0.440 − 0.897i)14-s + (0.528 − 0.848i)15-s + (−0.994 − 0.101i)16-s + (0.820 + 0.571i)17-s + ⋯
L(s,χ)  = 1  + (0.688 + 0.724i)2-s + (0.688 − 0.724i)3-s + (−0.0506 + 0.998i)4-s + (0.979 − 0.201i)5-s + 6-s + (−0.954 − 0.299i)7-s + (−0.758 + 0.651i)8-s + (−0.0506 − 0.998i)9-s + (0.820 + 0.571i)10-s + (0.918 + 0.394i)11-s + (0.688 + 0.724i)12-s + (−0.0506 − 0.998i)13-s + (−0.440 − 0.897i)14-s + (0.528 − 0.848i)15-s + (−0.994 − 0.101i)16-s + (0.820 + 0.571i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 311 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (0.943 + 0.330i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 311 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (0.943 + 0.330i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(311\)
Sign: $0.943 + 0.330i$
Motivic weight: \(0\)
Character: $\chi_{311} (146, \cdot )$
Sato-Tate group: $\mu(31)$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 311,\ (0:\ ),\ 0.943 + 0.330i)\)

Particular Values

\(L(\chi,\frac{1}{2})\) \(\approx\) \(2.392610030 + 0.4066705588i\)
\(L(\frac12,\chi)\) \(\approx\) \(2.392610030 + 0.4066705588i\)
\(L(\chi,1)\) \(\approx\) \(1.899530200 + 0.3048976812i\)
\(L(1,\chi)\) \(\approx\) \(1.899530200 + 0.3048976812i\)

Euler product

   \(L(\chi,s) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)
   \(L(s,\chi) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−25.00162989171474518416523759598, −24.58319758004564103792340982744, −22.94380422066010950885111407301, −22.217835659796283186592181621, −21.655940715950589230226883018287, −20.90476816216399805316955397722, −19.9596951450824045098382569330, −19.13906208248479495262800680339, −18.40094660379128541182579262976, −16.75894714870818337271671086377, −15.99397204297270871486343269129, −14.83067027304614881583922517925, −13.91030004436562506052107256914, −13.67414313341099444466341958521, −12.28155531804927577156435716634, −11.32385129428208196318428562908, −9.904693233622172685129603360833, −9.73197890963079659369887950488, −8.782245489112786783569811438741, −6.794110924206004131643011164683, −5.87959079459307172490241335014, −4.776636004501681312420196264697, −3.54740709474493115388825947863, −2.81867308647941495627484709394, −1.6626807237752285316071007657, 1.50313917640966670817692742468, 2.98694182084868730002948682666, 3.732326802764554242089589844935, 5.43691945178472106135349889060, 6.262060498066924324139263866571, 7.10627219471728460807202553488, 8.101496565096548271705481889289, 9.24652527481366670040686041609, 10.02425641484582041003800937303, 12.0410980217833658050662100455, 12.67435502510547083572440451599, 13.509975505396637287538457359576, 14.13247552306852659029572191617, 15.02295870811482813720252548695, 16.137944413505120752147405532812, 17.22813184887859218067752999864, 17.75973578260066848349782693497, 18.97175998892850993685584391532, 20.164378793167612592640634231435, 20.699304340633453245837881015926, 22.036078418836975977456273626567, 22.591883586235236761772695304590, 23.672340541974390565658308057535, 24.56861132719402193444862487616, 25.32620978866355118509775933844

Graph of the $Z$-function along the critical line