Properties

Degree $1$
Conductor $31$
Sign $-0.996 + 0.0846i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.809 − 0.587i)2-s + (0.104 + 0.994i)3-s + (0.309 + 0.951i)4-s + (−0.5 − 0.866i)5-s + (0.5 − 0.866i)6-s + (−0.978 − 0.207i)7-s + (0.309 − 0.951i)8-s + (−0.978 + 0.207i)9-s + (−0.104 + 0.994i)10-s + (−0.669 + 0.743i)11-s + (−0.913 + 0.406i)12-s + (−0.913 − 0.406i)13-s + (0.669 + 0.743i)14-s + (0.809 − 0.587i)15-s + (−0.809 + 0.587i)16-s + (−0.669 − 0.743i)17-s + ⋯
L(s,χ)  = 1  + (−0.809 − 0.587i)2-s + (0.104 + 0.994i)3-s + (0.309 + 0.951i)4-s + (−0.5 − 0.866i)5-s + (0.5 − 0.866i)6-s + (−0.978 − 0.207i)7-s + (0.309 − 0.951i)8-s + (−0.978 + 0.207i)9-s + (−0.104 + 0.994i)10-s + (−0.669 + 0.743i)11-s + (−0.913 + 0.406i)12-s + (−0.913 − 0.406i)13-s + (0.669 + 0.743i)14-s + (0.809 − 0.587i)15-s + (−0.809 + 0.587i)16-s + (−0.669 − 0.743i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 31 ^{s/2} \, \Gamma_{\R}(s+1) \, L(\chi,s)\cr =\mathstrut & (-0.996 + 0.0846i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 31 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s,\chi)\cr =\mathstrut & (-0.996 + 0.0846i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(31\)
Sign: $-0.996 + 0.0846i$
Motivic weight: \(0\)
Character: $\chi_{31} (17, \cdot )$
Sato-Tate group: $\mu(30)$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 31,\ (1:\ ),\ -0.996 + 0.0846i)\)

Particular Values

\(L(\chi,\frac{1}{2})\) \(\approx\) \(0.0003498729413 + 0.008252757005i\)
\(L(\frac12,\chi)\) \(\approx\) \(0.0003498729413 + 0.008252757005i\)
\(L(\chi,1)\) \(\approx\) \(0.4398587578 + 0.01522644710i\)
\(L(1,\chi)\) \(\approx\) \(0.4398587578 + 0.01522644710i\)

Euler product

   \(L(\chi,s) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)
   \(L(s,\chi) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−35.70829349002047768880615145090, −34.817419460849600766325438953, −34.09322865389823448355129093414, −32.2629946941892115263703159883, −30.97705204403406646811731143765, −29.39494331044338654318843999907, −28.697011094727440199302352801998, −26.73017310345942281145818473972, −26.07315484545986642767397242799, −24.68929072378361729826700043440, −23.636672228827682544944178541610, −22.39651333194633009659633951223, −19.81083534456835475851540121104, −19.00948219167128024835487233870, −18.15356986044038416004508038490, −16.54635396481488270179249202990, −15.134624687859589039692054857158, −13.73936454689426900144135318683, −11.87115921427556049504369406669, −10.25895251167032230358467296329, −8.43561437445402297351867029571, −7.1397730688944096977085936582, −6.094978255458314721019968875304, −2.64624139332603607870172746235, −0.00694396042762875805059456551, 3.04426864322953854993249123545, 4.73709792159417020058611490687, 7.5754326059981839336884181328, 9.21384182015058663386856535577, 10.04434646002069926894817379707, 11.705121106528410136018402775393, 13.08077055796011579185861908289, 15.60563444160709632332367528324, 16.34067986595775149446132695347, 17.70577790456946450353508850809, 19.81464936543266176905251163372, 20.13718496157792082973260230257, 21.62957826280450134932380578482, 22.91343902109190312026084396628, 25.02457155367068248982921554159, 26.28345832697436937006135037099, 27.23963538490566698883026537025, 28.38110459910394332347236477423, 29.17338473455325748694742682607, 31.14787776465435233359724795543, 32.02922369831403211250630634277, 33.48157646957508902140324830842, 34.951731325736862690914944839970, 36.05925963428187926730908690110, 37.09155526460713331911116549345

Graph of the $Z$-function along the critical line