Properties

Label 1-2736-2736.205-r1-0-0
Degree $1$
Conductor $2736$
Sign $-0.968 + 0.248i$
Analytic cond. $294.024$
Root an. cond. $294.024$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.642 − 0.766i)5-s + (0.5 − 0.866i)7-s i·11-s + (−0.642 − 0.766i)13-s + (0.766 + 0.642i)17-s + (0.939 + 0.342i)23-s + (−0.173 − 0.984i)25-s + (−0.342 + 0.939i)29-s − 31-s + (−0.342 − 0.939i)35-s i·37-s + (0.173 − 0.984i)41-s + (0.342 + 0.939i)43-s + (−0.939 − 0.342i)47-s + (−0.5 − 0.866i)49-s + ⋯
L(s)  = 1  + (0.642 − 0.766i)5-s + (0.5 − 0.866i)7-s i·11-s + (−0.642 − 0.766i)13-s + (0.766 + 0.642i)17-s + (0.939 + 0.342i)23-s + (−0.173 − 0.984i)25-s + (−0.342 + 0.939i)29-s − 31-s + (−0.342 − 0.939i)35-s i·37-s + (0.173 − 0.984i)41-s + (0.342 + 0.939i)43-s + (−0.939 − 0.342i)47-s + (−0.5 − 0.866i)49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.968 + 0.248i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.968 + 0.248i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(2736\)    =    \(2^{4} \cdot 3^{2} \cdot 19\)
Sign: $-0.968 + 0.248i$
Analytic conductor: \(294.024\)
Root analytic conductor: \(294.024\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2736} (205, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 2736,\ (1:\ ),\ -0.968 + 0.248i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(-0.1809661772 - 1.432614180i\)
\(L(\frac12)\) \(\approx\) \(-0.1809661772 - 1.432614180i\)
\(L(1)\) \(\approx\) \(1.047989604 - 0.4607116982i\)
\(L(1)\) \(\approx\) \(1.047989604 - 0.4607116982i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 \)
good5 \( 1 + (0.642 - 0.766i)T \)
7 \( 1 + (0.5 - 0.866i)T \)
11 \( 1 - iT \)
13 \( 1 + (-0.642 - 0.766i)T \)
17 \( 1 + (0.766 + 0.642i)T \)
23 \( 1 + (0.939 + 0.342i)T \)
29 \( 1 + (-0.342 + 0.939i)T \)
31 \( 1 - T \)
37 \( 1 - iT \)
41 \( 1 + (0.173 - 0.984i)T \)
43 \( 1 + (0.342 + 0.939i)T \)
47 \( 1 + (-0.939 - 0.342i)T \)
53 \( 1 + (-0.984 + 0.173i)T \)
59 \( 1 + (-0.342 - 0.939i)T \)
61 \( 1 + (0.642 + 0.766i)T \)
67 \( 1 + (0.984 - 0.173i)T \)
71 \( 1 + (0.173 - 0.984i)T \)
73 \( 1 + (0.939 - 0.342i)T \)
79 \( 1 + (-0.766 - 0.642i)T \)
83 \( 1 + (-0.866 - 0.5i)T \)
89 \( 1 + (-0.939 - 0.342i)T \)
97 \( 1 + (-0.173 + 0.984i)T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.26426308702731991343950466524, −18.62533683201750434733215711268, −18.188181164113813604787117293367, −17.37703640072138581013063451068, −16.859363444774839190774063449828, −15.811465722553670450816138792443, −15.06046192349191590967546176433, −14.47036114965005716361538180733, −14.12263599643132773381010068665, −12.92508073177963751063554985408, −12.41218044370886226457368056894, −11.465801734791795523435576586073, −11.05315337487061202229082318546, −9.79431757052908025642812289572, −9.636591146953474661992033082380, −8.75050048484564786484236126854, −7.627448144581061609685162122064, −7.12433047002882610989200680925, −6.30124821677606684605912933159, −5.39472606784540423226347380430, −4.87256956519941571276699372689, −3.80497497147810545556552414817, −2.64182603834400431682172901586, −2.239398557210732617629870767251, −1.35659335454926641725264117281, 0.22070891196161282889976909139, 1.10403340177750871893650163538, 1.71692069480985873684036427392, 3.015700283505629727574916989467, 3.69575530860355806104574546299, 4.8237538628466024675474451997, 5.30635056089521807804487354750, 6.06420870615237545767107735630, 7.07578204993042792326625991622, 7.90045819879496511397864121184, 8.469565988663644979733499875004, 9.33970545064893046578214228981, 10.08034257161497277936959556363, 10.78480658038475242864093340826, 11.413914969447667983561069268089, 12.57924089003728954657665043916, 12.91751591795216219761228455673, 13.75913574723788976481470074012, 14.3657886037789661635175874184, 15.03215787497064451980736479254, 16.12757553326514904759538021018, 16.73735668929953489422196530106, 17.1926621148976319917667603153, 17.815672919827670678007258840528, 18.70681750883313150451438306300

Graph of the $Z$-function along the critical line