Properties

Label 1-2665-2665.2664-r0-0-0
Degree $1$
Conductor $2665$
Sign $1$
Analytic cond. $12.3762$
Root an. cond. $12.3762$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s − 7-s + 8-s + 9-s + 11-s + 12-s − 14-s + 16-s + 17-s + 18-s + 19-s − 21-s + 22-s − 23-s + 24-s + 27-s − 28-s − 29-s − 31-s + 32-s + 33-s + 34-s + 36-s + 37-s + ⋯
L(s)  = 1  + 2-s + 3-s + 4-s + 6-s − 7-s + 8-s + 9-s + 11-s + 12-s − 14-s + 16-s + 17-s + 18-s + 19-s − 21-s + 22-s − 23-s + 24-s + 27-s − 28-s − 29-s − 31-s + 32-s + 33-s + 34-s + 36-s + 37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2665 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2665 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(2665\)    =    \(5 \cdot 13 \cdot 41\)
Sign: $1$
Analytic conductor: \(12.3762\)
Root analytic conductor: \(12.3762\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{2665} (2664, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 2665,\ (0:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(5.213271078\)
\(L(\frac12)\) \(\approx\) \(5.213271078\)
\(L(1)\) \(\approx\) \(2.807782134\)
\(L(1)\) \(\approx\) \(2.807782134\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 \)
41 \( 1 \)
good2 \( 1 + T \)
3 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 + T \)
17 \( 1 + T \)
19 \( 1 + T \)
23 \( 1 - T \)
29 \( 1 - T \)
31 \( 1 - T \)
37 \( 1 + T \)
43 \( 1 - T \)
47 \( 1 - T \)
53 \( 1 + T \)
59 \( 1 - T \)
61 \( 1 + T \)
67 \( 1 - T \)
71 \( 1 + T \)
73 \( 1 + T \)
79 \( 1 - T \)
83 \( 1 + T \)
89 \( 1 + T \)
97 \( 1 - T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.62624320569597819635813115609, −18.864642366115203633257269059248, −18.12851969821581824959281845542, −16.65436635578731403910606157637, −16.45083330469701861113693169603, −15.626837718618955970666868639835, −14.794903618391448665830275482211, −14.40873775853149447603205410862, −13.59583900529167668608622164988, −13.11701101742649235941604399774, −12.27592646442402501501253521058, −11.78448063634680778154994993286, −10.69907317829476804886921880183, −9.666769722718803476073831953987, −9.51518518482533136615712376469, −8.24398769785795184352879356348, −7.4845685429360720567383252108, −6.844220952744762927257128148011, −6.05332017589671405172497143089, −5.24822182920595692137734534173, −4.06815007388915536710785227933, −3.60583651531770503223513158159, −3.02643409693924321087650925086, −2.03848111442326867039404777206, −1.19552428054049151639955602583, 1.19552428054049151639955602583, 2.03848111442326867039404777206, 3.02643409693924321087650925086, 3.60583651531770503223513158159, 4.06815007388915536710785227933, 5.24822182920595692137734534173, 6.05332017589671405172497143089, 6.844220952744762927257128148011, 7.4845685429360720567383252108, 8.24398769785795184352879356348, 9.51518518482533136615712376469, 9.666769722718803476073831953987, 10.69907317829476804886921880183, 11.78448063634680778154994993286, 12.27592646442402501501253521058, 13.11701101742649235941604399774, 13.59583900529167668608622164988, 14.40873775853149447603205410862, 14.794903618391448665830275482211, 15.626837718618955970666868639835, 16.45083330469701861113693169603, 16.65436635578731403910606157637, 18.12851969821581824959281845542, 18.864642366115203633257269059248, 19.62624320569597819635813115609

Graph of the $Z$-function along the critical line