L(s) = 1 | + (−0.309 + 0.951i)2-s + (0.809 + 0.587i)3-s + (−0.809 − 0.587i)4-s + (−0.809 + 0.587i)6-s − 7-s + (0.809 − 0.587i)8-s + (0.309 + 0.951i)9-s + (0.309 − 0.951i)11-s + (−0.309 − 0.951i)12-s + (−0.309 − 0.951i)13-s + (0.309 − 0.951i)14-s + (0.309 + 0.951i)16-s + (0.809 − 0.587i)17-s − 18-s + (−0.809 + 0.587i)19-s + ⋯ |
L(s) = 1 | + (−0.309 + 0.951i)2-s + (0.809 + 0.587i)3-s + (−0.809 − 0.587i)4-s + (−0.809 + 0.587i)6-s − 7-s + (0.809 − 0.587i)8-s + (0.309 + 0.951i)9-s + (0.309 − 0.951i)11-s + (−0.309 − 0.951i)12-s + (−0.309 − 0.951i)13-s + (0.309 − 0.951i)14-s + (0.309 + 0.951i)16-s + (0.809 − 0.587i)17-s − 18-s + (−0.809 + 0.587i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 25 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.187 + 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.187 + 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5240838236 + 0.4335598446i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5240838236 + 0.4335598446i\) |
\(L(1)\) |
\(\approx\) |
\(0.7706990758 + 0.4515038146i\) |
\(L(1)\) |
\(\approx\) |
\(0.7706990758 + 0.4515038146i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
good | 2 | \( 1 + (-0.309 + 0.951i)T \) |
| 3 | \( 1 + (0.809 + 0.587i)T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 + (0.309 - 0.951i)T \) |
| 13 | \( 1 + (-0.309 - 0.951i)T \) |
| 17 | \( 1 + (0.809 - 0.587i)T \) |
| 19 | \( 1 + (-0.809 + 0.587i)T \) |
| 23 | \( 1 + (-0.309 + 0.951i)T \) |
| 29 | \( 1 + (-0.809 - 0.587i)T \) |
| 31 | \( 1 + (-0.809 + 0.587i)T \) |
| 37 | \( 1 + (-0.309 - 0.951i)T \) |
| 41 | \( 1 + (0.309 + 0.951i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (0.809 + 0.587i)T \) |
| 53 | \( 1 + (0.809 + 0.587i)T \) |
| 59 | \( 1 + (0.309 + 0.951i)T \) |
| 61 | \( 1 + (0.309 - 0.951i)T \) |
| 67 | \( 1 + (0.809 - 0.587i)T \) |
| 71 | \( 1 + (-0.809 - 0.587i)T \) |
| 73 | \( 1 + (-0.309 + 0.951i)T \) |
| 79 | \( 1 + (-0.809 - 0.587i)T \) |
| 83 | \( 1 + (0.809 - 0.587i)T \) |
| 89 | \( 1 + (0.309 - 0.951i)T \) |
| 97 | \( 1 + (0.809 + 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−38.28063243031528312009180392797, −36.692984174110792567464581601384, −36.05393354849720361244723971653, −34.887120850584521875781093352581, −32.53423775786614196310832036417, −31.45895811645762387438683159672, −30.345757362397796713437597878831, −29.29868373787037724456850028721, −28.03366939887295734630480981476, −26.28598245387479879441431448339, −25.58333562770774913914970287131, −23.61413591520153963594981421375, −22.0873815233214598442836214081, −20.560065527476893369493659005480, −19.48026988227819791926043054632, −18.59221496591904323290261617352, −16.92435450015065411443429305569, −14.64851488374259577660623929047, −13.108533409221915032416646344925, −12.15610361504569240431112275340, −9.984614757569034276556628636003, −8.83004689737836649629298973739, −7.0252574621156174444793516646, −3.87162723584480278913458272457, −2.13858987186166861971624060558,
3.56286301215718626248462418835, 5.69525797854698655509075110454, 7.65721871714893782562673106625, 9.1007059557284357333270928515, 10.2649821979982712510127350133, 13.17474937252591201691648066386, 14.47471425031826237727039410793, 15.7750222662889525951832674177, 16.77026179013987180530517255610, 18.779510872615321987949064088151, 19.815615669641949688948559710507, 21.74419316688276455445293419541, 23.02881841425419766842900148042, 24.83111727710086347653701125163, 25.647646736090431891325639246723, 26.851369901539873776928623922210, 27.81613798359506846716938392087, 29.72059632287232218730806481137, 31.863185453142629020134564875139, 32.142785570811738917279883934617, 33.51027636896173048414152156095, 34.91139412540518781839425671576, 36.11669324804437190080436291140, 37.26380364511621541164631254905, 38.36385625028819045647228142415