Properties

Degree $1$
Conductor $235$
Sign $-0.959 + 0.282i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Learn more about

Normalization:  

Dirichlet series

L(χ,s)  = 1  + (−0.136 + 0.990i)2-s + (0.519 + 0.854i)3-s + (−0.962 − 0.269i)4-s + (−0.917 + 0.398i)6-s + (0.997 + 0.0682i)7-s + (0.398 − 0.917i)8-s + (−0.460 + 0.887i)9-s + (−0.682 + 0.730i)11-s + (−0.269 − 0.962i)12-s + (−0.816 + 0.576i)13-s + (−0.203 + 0.979i)14-s + (0.854 + 0.519i)16-s + (0.730 − 0.682i)17-s + (−0.816 − 0.576i)18-s + (−0.334 + 0.942i)19-s + ⋯
L(s,χ)  = 1  + (−0.136 + 0.990i)2-s + (0.519 + 0.854i)3-s + (−0.962 − 0.269i)4-s + (−0.917 + 0.398i)6-s + (0.997 + 0.0682i)7-s + (0.398 − 0.917i)8-s + (−0.460 + 0.887i)9-s + (−0.682 + 0.730i)11-s + (−0.269 − 0.962i)12-s + (−0.816 + 0.576i)13-s + (−0.203 + 0.979i)14-s + (0.854 + 0.519i)16-s + (0.730 − 0.682i)17-s + (−0.816 − 0.576i)18-s + (−0.334 + 0.942i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(\chi,s)=\mathstrut & 235 ^{s/2} \, \Gamma_{\R}(s) \, L(\chi,s)\cr =\mathstrut & (-0.959 + 0.282i)\, \Lambda(\overline{\chi},1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s,\chi)=\mathstrut & 235 ^{s/2} \, \Gamma_{\R}(s) \, L(s,\chi)\cr =\mathstrut & (-0.959 + 0.282i)\, \Lambda(1-s,\overline{\chi}) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(235\)    =    \(5 \cdot 47\)
Sign: $-0.959 + 0.282i$
Motivic weight: \(0\)
Character: $\chi_{235} (228, \cdot )$
Sato-Tate group: $\mu(92)$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 235,\ (0:\ ),\ -0.959 + 0.282i)\)

Particular Values

\(L(\chi,\frac{1}{2})\) \(\approx\) \(0.1629127033 + 1.129322847i\)
\(L(\frac12,\chi)\) \(\approx\) \(0.1629127033 + 1.129322847i\)
\(L(\chi,1)\) \(\approx\) \(0.6680480708 + 0.8179073563i\)
\(L(1,\chi)\) \(\approx\) \(0.6680480708 + 0.8179073563i\)

Euler product

   \(L(\chi,s) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)
   \(L(s,\chi) = \displaystyle\prod_p (1- \chi(p) p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−26.121657775175902343083125425914, −24.805827250910655244756565385448, −23.94985693682358717436640168670, −23.19578501174224160791118276108, −21.83696670447782465169008196240, −21.04987725070211844318745040970, −20.19710253738460129559880656392, −19.35351619818915901633639513086, −18.5056406497904382995863261425, −17.7578576582666289550882772717, −16.87988285566924035181399581437, −14.94576530044798010861097911808, −14.27392114591432503985477421159, −13.17278692757051313064754125449, −12.52586206127794722447603341199, −11.40093932032142263640891935804, −10.56022803815975924622061880662, −9.21194994802174836589560809898, −8.16888061330754973165312254816, −7.62345168268868935389822873988, −5.79074346656738052963007843655, −4.53450166208213718621684276530, −3.05655316942580069096039361994, −2.19000608816976722428267635412, −0.84374968021127352740938208038, 2.02634380690736297809175637556, 3.79800122652061421858499697006, 4.87969469039340679065392940307, 5.508546830518741723551046739647, 7.40766775169092017295291184964, 7.89620840921793951444159209431, 9.178629497380494066773826602918, 9.863206756292895852427212782589, 11.01843347507255801537306370030, 12.51207316129941051004918328016, 13.89947879413686420520830083461, 14.600699797540606769215154425350, 15.20616431501545846964993798050, 16.29704123056445166336358348191, 17.05367183350930209537875368451, 18.11597606228628229871647603236, 19.06102504490428038476949175037, 20.32722384894592298900697516578, 21.205028895200156690668866437083, 22.067178250049220534392647178723, 23.157521457195633156648306196, 24.00897238847465046745083234719, 25.08869314773685326409907524544, 25.704506856896630638242586500735, 26.66368851804494387902031603393

Graph of the $Z$-function along the critical line